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PREFACE

This is the final report for the program entitled Study of Structural
Damping in Solid Propellant Rocket Motors Undergoing Unstable Acoustic
Oscillations, Contract F04611-76-C-0039. The work was accomplished at
Hercules Incorporated, Bacchus Works, Magna, Utah. The report is submitted
in accordance with data item BOO5 of the contract. The contract was issued
to Hercules by the Air Force Rocket Propulsion Laboratory, Edwards, Ca.,
93523. Captain J. J. Donn was the AFRPL project manager for the program.

At Hercules, Mr. L. R. West assisted with the acoustics testing work
on this program. Mr. Lanny Myers assisted with the propellant dynamic
testing work and Dr. Scott Beckwith provided values of dynamic propellant
moduli for use in the NASTRAN analyses. Dr. Dean Wang performed NASTRAN
analyses and Mr. Norm Peterson studied a rod-organ pipe model in support
of the Structural Damping program. Dr. Merrill Beckstead was a technical
consultant and Mr. McKay Anderson was the Technical Program Manager. Dr.
F. R. Jensen was the Principal Investigator. Dr. F. E. C. Culick of the
California Institute of Technology also consulted on the project.
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SECTION I
INTRODUCTION

Almost all solid propellant rocket motors exhibit some degree of com-
bustion instability. Combustion instability is characterized by chamber
pressure oscillations in a burning motor that increase in an unstable
(e®t envelope) fashion until some limiting amplitude is reached. As burn-
ing in the motor continues, the conditions required to sustain oscillation
in a particular mode change and the oscillations themselves typically die
away before the end of motor operation.

The hot combustion gases in the combustion cavity can oscillate in
various natural acoustic modes much the same way that the column of air
in an organ pipe resonates. A small perturbation in combustion cavity
pressure can start acoustic oscillations in one or more of the natural
acoustic modes. If the mode is unstable, the small pressure perturbation
causes the mode to grow in amplitude at a rate determined by combined
growth and loss mechanisms. One potential loss mechanism is the structural
damping inherent in the motor case and grain structure. Since the motor
can absorb energy from an oscillating acoustic mode, structural damping
can have a significant stabilizing effect. An earlier study(l) indicated
the potential role of structural damping in stabilizing acoustic oscilla-
tions.

High level vibration (as high as 300 g's), has been attributed to
unstable acoustic pressure oscillations in some modern ballistic missile
motors. Such high level vibration response is potentially hazardous to the
safe and reliable operation of a missile. Because of this, a considerable
amount of effort has been devoted to the study of unstable acoustic pres-
sure oscillations in solid rocket motors over the past several years. As
a part of such studies, the Aerojet Solid Propulsion Company (ASPC) was
commissioned by the Air Force Rocket Propulsion Laboratory (AFRPL) to
develop a Standard Stability Program (a computer program that could serve
as a standard for the industry for predicting the acoustic stability of
new rocket motor designs).

The plans for the Standard Stability Program did not include considera-
tion of structural damping as a stabilizing mechanism. Therefore, the
AFRPL issued contract F04611-76-C-0039, to Hercules Incorporated, Bacchus
Works, Magna, Utah, to do the work required to incorporate structural
damping considerations into the ASPC Standard Stability Program. This
final report covers the work performed by Hercules on the AFRPL Structural
Damping Program.

(1)

Anderson, J. McKay, "Structural Damping of Acoustic Oscillations in
Solid Propellant Rocket Motors', Eighth JANNAF Combustion Meeting,
Monterey, Cal. 14-16 September 1971.




The objectives of the Structural Damping Program were to establish the
role of structural damping in regulating acoustic pressure growth rates in
solid propellant rocket motors and to show the accuracy to which structural
damping calculations can be made. The program was organized into the five
tasks discussed below.

TASK I - EXPERIMENTAL MEASUREMENT OF STRUCTURAL DAMPING

Objective - Experimentally determine the magnitude of structural
damping in a l0-inch~diameter test motor and demonstrate how
damping is affected by changes in acoustic frequency and motor
chamber pressure.

TASK II - VERIFICATION OF STRUCTURAL DAMPING CALCULATIONS

Objective - Demonstrate the accuracy to which the measured
structural damping rates can be calculated using the NASTRAN
computer program. This task required that dynamic propellant
moduli be obtained for use in the analysis models.

TASK III - GUIDELINES AND PROCEDURES FOR STRUCTURAL DAMPING ANALYSES

Objective - Establish guidelines and procedures that would
enable analysts to routinely carry out structural damping
analyses.

TASK IV - DEVELOP PARAMETRIC STRUCTURAL DAMPING CURVES

Objective - Develop a series of parametric charts which will
allow analysts to estimate structural damping magnitudes for
simple stability analyses.

TASK V - INCORPORATION OF STRUCTURAL DAMPING INTO ASPC ACOUSTIC
STABILITY PROGRAM

Objective - Ensure compatibility of the structural damping
analysis computer program with the ASPC Standard Stability
Program nomenclature and procedures and provide a single
reference source for all calculations necessary for an all-up
acoustic stability analysis.

Tasks I and II of the program were scheduled to run concurrently. The
program plan included provisions for reviewing and replanning the program
if any trouble precluded successful completion of Tasks I and II. Various
technical problems were encountered in Tasks I and II and neither task
was successfully completed. This report documents the work performed
on Tasks I and II, discusses the technical problems encountered, and
makes suggestions for a future study of structural damping. 4
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Problems experienced with the experimental work of Task I are the
main reason the project was not completed as planned. Initially, damping
measurements indicated that the damping coefficient, @, is a strong function
of geometry, (gap width), and pressure. The expected result of a mono-
tonically increasing value of a with increasing pressure was not achieved.
Later experiments indicated that the acoustic driver used for the testing
was not uncoupled from the acoustic cavity and most of the test data con-
tained the influence of the driver as well as the characteristics of the
acoustic cavity. The final experiment in the program, using a 1/16-inch-
diameter hole between acoustic cavity and driver to uncouple the two
cavities, resulted in a significantly different a versus pressure response.

The second section of this report covers the general approach to Tasks
I and II. Section III covers the basic test installations and procedures,

and Section IV contains a discussion of the corresponding test data. Dynamic

moduli testing using the Gottenberg apparatus and modulus conversion from
relaxation data are discussed in Section V. The analyses that were per-
formed to support the program, mostly using NASTRAN, are discussed in
Section VI. Sections VII and VIII contain recommendations and conclusions,
respectively. Mr. Normand Peterson's report of his study of the rod-organ
pipe model is included as an appendix to this report.

10
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SECTION II
APPROACH

The five tasks into which this project was organized were listed in
Section I. Only Tasks I and II are discussed here.

A. TASK 1 ~ EXPERIMENTAL MEASUREMENT OF STRUCTURAL DAMPING

Plans for Task I called for performing damping measurements on three
different test motors. The damping was to have been measured by introducing
an acoustic wave in the motor combustion cavity and then either measuring
the pressure decay after the input to the driver was removed or measuring
the width of a frequency response curve. Such measurements would indicate
the total damping in the system. Sources of damping included in the damping
data would be structural damping in the grain, structural damping in the
case, boundary layer shear damping, and flow damping due to the particular
motor geometry. Since the damping source of major interest in the study
was structural damping of the grain, a comparison between a model with a
live propellant grain and a model with a rigid-walled grain was planned
in order to isolate the value of structural damping due to the grain.

Original plans called for a motor with a rigid-walled grain (plaster-
of-paris) to be constructed as nearly as possible like the motors with the
live propellant grains. However, a cursory stress analysis of a motor
with a plaster-of-paris grain indicated that the grain and case bond
system could not withstand the high loads associated with pressurization
to 1500 psi. For this reason, an all steel rigid-walled model with internal
geometry similar to that of the live propellant motors was used.

The main difference in geometry between the live propellant motors
and the rigid-walled model is in the area of the flapped dome. When one
of the live propellant motors is pressurized, the forward dome cavity
opens up to an extent that depends on the pressure level. When the dome
cavity opens up, it is wide near the centerbore and tapers down to a small
crack at the bond termination near the dome tangent line. Thus, the dome
cavity is a variable thickness gap with an outside surface approximately
in the shape of a hemisphere. The inert (rigid-walled) model was designed
with a forward dome gap of uniform thickness extending along a radial line
from the centerbore to the motor inside radius. Thus the gap model and
the actual motor gap are of different geometries. The uniform width
(thickness) of the gap model in the inert motor was designed to be adjust-
able from 0.0 to 0.5 inch to allow modeling of the live propellant motors
at various pressure levels.

A low cost, 10-inch-diameter motor design that has been u-:<d at
Hercules for other experimental work was selected as the test vehicle. The
lightweight analog motor (LAM) was designed for and has been proof tested
for pressures greater than 2000 psi. For this program, damping measurements

11
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were made at pressures up to 1500 psi. Two different types of propellant,
hydroxy-terminated polybutadiene (HTPB) and a crosslinked double-base (XLDB)
were selected for use in the program. The two propellant types were expected
to have sufficiently different damping characteristics to make the dif-
ferences measurable. LAM 179, (motor serial number 179), was cast at the

end of April 1976, with VSF-3 propellant. The VSF-3 propellant is an HTPB
type propellant. LAM 180 was cast at the end of May 1976, with VRX-2,

an XLDB propellant. Both motors were cast, rather than cartridge loaded,
because the casting operation happened to be more convenient and efficient

at the time.

B. TASK II - STRUCTURAL DAMPING ANALYSIS VERIFICATION

The objective of Task II was to verify that structural damping factors
can be calculated using the NASTRAN computer program and an appropriate
finite element model. Plans called for an analysis of the model at each
test condition used in Task I so that a direct comparison could be made
between test and analysis data. The comparison would result in a qualita-
tive measure of the accuracy to which structural damping calculations can
be made.

A required input to the NASTRAN finite element model is the propellant
dynamic moduli (the model includes case, propellant, and gas elements). The
work to determine the moduli was a part of this task. Plans called for
use of the Gottenberg torsional shear testing apparatus to determine the
propellant dynamic moduli. The determination of propellant properties
actually carried out in the program is discussed in Section V. The NASTRAN
and other analyses conducted are discussed in Section VI.

12
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SECTION III
ACOUSTIC TEST SET-UPS AND PROCEDURES
A. RIGID-WALLED MODEL

A sketch of the inert model designed to represent a rigid-walled LAM
is shown in Figure 1. The nine threaded holes along the tube wall are
sized to accept PCB model 116All pressure transducers. The pressure trans-
ducers are used to measure the oscillatory component of the acoustic
cavity pressure. The nine transducer locations along the wall and one in
the end plate were used to determine acoustic mode shapes. Cap screws
with seal washers were placed in all holes not being used. A probe system
(not shown in Figure 1) was also used to determine acoustic mode shapes. The
probe system consisted of a rod about 1/2-inch in diameter with a pressure
transducer connected to one end. A special end plate with a seal around
the rod was used with the probe system. The probe-mounted transducer could
be continuously adjusted from one end of the centerbore cavicy to the other.

The radial gap in the inert model opposite the driver end was adjustable
from 0.0 to 0.5 inch in width. The adjustment was made by putting spacers
between the end plate and the outer bolt ring. The end plate is held
against the spacers by friction and chamber pressure.

Most of the tests were performed with the driver fitting loosely into
the aluminum end plate as shown in Figure 1. Using a loose fit between
the driver flange and the end plate allowed chamber pressure to be all
around the driver. Having the pressure equalized between the main cavity
and the speaker cavity assured that the driver would not be under a pres-
sure load during the high pressure tests. The cavity around the driver was
tightly packed with polyurethane foam to hold the driver in place against
the end plate.

The last few tests were performed with a modified driver configuration.
An end plate with a 1/16-inch-diameter hole between the main cavity and the
driver cavity was used in place of the end plate shown in Figure 1. The
new end plate had a provision for rigid attachment of the driver to the end
plate.

B. INSTRUMENTATION

All response measurements were made using PCB model 116All pressure
transducers. Output from the pressure transducers was input to charge
amplifiers. Output from the amplifiers was observed on an oscilloscope
and recorded on an oscillograph or an X-Y recorder. Steady state measure-
ments were read on an HP model 3400A RMS voltmeter. A digital frequency
counter was used for precise determination of frequencies.

e,
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The driver was a University model ID-75 loudspeaker driver. An audio
oscillator was connected to the driver through a McIntosh power amplifier.
The audio oscillator was adjusted for a 2 volt output at 200 Hz. The
power amplifier gain was adjusted to put out a constant 8 volts (rms) into
the 16 ohm (nominal) driver.

C. MODE SHAPE DETERMINATION

Acoustic cavity mode shapes are mapped by using the probe and the
transducer locations along the tube wall. Prior to mapping mode shapes, a
frequency sweep is made with the pressure transducer in a particular fixed
position. The response amplitude is plotted as a function of frequency on
an X-Y recorder. The plot shows peaks at the acoustic resonant frequencies.
A particular mode is '"tuned in'" by adjusting the frequency knob on the
oscillator while observing the pressure transducer output on the voltage
meter. The frequency which produces a maximum voltage output is noted on
the frequency counter and the frequency knob is left untouched during mode

mapping.

When the resonant frequency has been tuned in, an acoustic mode is
mapped using the probe by moving the probe in increments from one end of the
cavity to the other. At each setting of the probe, the voltmeter reading
is recorded along with the probe position.

The wall positions are used to map mode shapes by removing the cap
screws one at a time and replacing them with the pressure transducer. The
same transducer is used for all readings so that differences between trans-
ducers will not have an effect on the results. Mapping the mode shapes using
the wall transducer positions with and without the probe in place gives an
indication of the amount of mode shape distortion caused by the presence
of the probe.

D. DAMPING FACTOR (a) MEASUREMENT

Two different kinds of tests can be performed to measure the damping
factor, a. Using the frequency response method, the frequency bandwidth
at the half power points, Af, will yield a accerding to

a= x. Af

When a resonant frequency, fo, has been tuned in, as described above, the
voltage V,, is recorded from the voltmeter reading. The half power points
are determined by dividing the maximum voltage Vo by V2. With the frequency
set at the resonance frequency, the frequency knob on the oscillator is
adjusted to a slightly lower frequency until a value of Vo/\ri-is read on
the voltmeter and the new frequency, fj, is recorded. The same procedure
for a slightly higher frequency, fj, gives Af = fp - f1.

Lo




The decay method is used by recording the pressure decay signal after
power to the driver has been cut off. The decay signal is recorded on an
oscillograph and the damping'factor is given by:

fo i+
G:-]_n ___n.
n

X.
1

The value of (a/f,) is commonly known as the logarithmic decrement. The

X; represents the amplitude of the pressure from the pressure decay curve
at the peak of any cycle and Xj4] is the corresponding amplitude n cycles
later.

E. LIGHTWEIGHT ANALOG MOTORS (LAM'S)

A sketch giving the configuration of a LAM is shown below.

In the acoustic tests performed for this program, the end closure with the
driver (as shown in Figure 1) was substituted for the end closure with

the nozzle that is shown in the sketch. The forward closure of Figure 1
was also used for the LAM tests in place of the closure shown above.

The LAM's used for testing in this program had a flap in the forward
dome so that the dome and propellant separated when the motor was pressurized.

The acoustic tests on the LAM's were performed remotely on the static
test firing range at the Bacchus Works facility. The motor was mounted
securely to a metal test stand using the bolts in the heavy LAM aft closure.
The test stand was, in turn, securely bolted to the floor of the static
firing test bay. The usual safety procedures were followed in testing the

LAM's.
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SECTION IV
ACOUSTIC TEST RESULTS AND DISCUSSION
A. INITIAL INERT MODEL EXPERIMENTATION

1. Natural Modes and Frequencies

With the inert model containing air at ambient pressure and tempera-
ture, and with the variable gap set at 1/4-inch, a frequency sweep was made
to determine the model acoustic cavity natural frequencies. The pressure
transducer was located at wall position No. 9 and the probe was at station
No. 1 (approximately 1.0 inch from the forward end plate). The wall trans-
ducer peaked at the frequency and voltage values shown in Table 1 (values
from the NASTRAN analysis are shown for comparison):

TABLE 1. FREQUENCIES AND MODE SHAPES FOR THE
INERT MODEL WITH 1/4-INCH GAP

Normalized Frequencies From
Frequency (Hz) Pressure NASTRAN Analysis (Hz)
151 0.015 144.7
371 0.034 372.9
625 0.018 635.0
900 @ 13 911.1
1178 0132 1190.0
1445 0.082 -=

The mode shape of the 151 Hz mode was measured using both wall
transducer locations and the probe. The results are shown in Figure 2.
The probe was kept at station No. 1 while the wall measurements were being
made. Mode shapes in the cavities at either end of the centerbore were not
included in the mode verification measurements.

Mode shapes for the 371, 900, and 1178 Hz modes are shown in
Figures 3, 4, and 5, respectively. The 625 Hz mode was weak and not well
defined and was not plotted. The 1445 Hz mode is a high frequency mode
the study of which is beyond the scope of this program. This program was
limited to a study of a few lower frequency modes.

17
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2. Damping and Natural Frequency Measurements Under Various Conditions

Initial experimentation using the inert model included compari-
sons between methods, locations, and probe uses. For each condition, the
resonant frequency (f) was measured by tuning the oscillator to maximize
the voltmeter reading, and the damping factor (@) was measured by either
or both the decay or half power method.

The data given in Table 2 indicate how the damping and frequency
change as the probe is moved 2long the centerbore. For example, with the
probe located at station 2 (see sketch in Table 2 for station locations)
first mode frequencies of 147.0 and 147.9 Hz were measured using the two
measurement methods. When the probe was moved to station 20, frequencies
of 141.4 and 142.4 Hz were measured. The corresponding damping measure-
ments are 37.07 and 38.10 sec~l for station 2 and 36.13 and 37.33 sec”!
for station 20. Evidently the probe lowers the first mode frequency as it
is extended into the centerbore but has little effect on the damping in the
first mode. In ad?ition, the two damping measurement methods provide agree-
ment within 1 sec”  for the damping coefficient. Further examination of
Table 2 indicates that extending the probe further into the centerbore
increases the measured damping coefficient for the higher modes.

Results from a similar set of tests are shown in Table 3. For
the tests of Table 3 the probe was located at different positions along the
centerbore but damping and frequency measurements were made by using a
transducer located at wall position No. 9 as shown in the sketch of Table 3.
The data shown in Table 3 indicate that the probe causes a significant dis-
torion in the inert model response.

Table 4 shows how frequency and damping vary with measurement
location when the probe is not installed. Only the first acoustic mode 1is
covered by the data of Table 4. The first mode shape has a pressure node
near location No. 7, thus the signal level at No. 7 is low and data may
not be reliable. Disregarding data from location No. 7, the decay method
gives an average value of @ = 30.95 sec”l with a standard deviation of
0.88 sec™l, The half Yower method yielded an a = 30.40 sec”! yith standard
deviation of 3.08 sec™. Based on the comparison of standard deviations,
the decay method appeared to give more repeatable results. For this
reason the decay method was adopted as the main method in the later work.

The frequencies shown in Table 4 for both methods were deter-
mined the same way and should be the same except for testing variations.
Omitting data from location No. 7 again, the decay method frequencies
averaged 143.22 Hz with a standard deviation of 0.59 Hz. The frequencies
listed under the half power method averaged 145.08 Hz with a standard
deviation of 0.54 Hz.
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TABLE 2.

VARIATION IN FREQUENCY AND DAMPING AS A FUNCTION OF

PROBE POSITION FOR THE TWO DIFFERENT DAMPING MEASUREMENT

METHODS (MEASUREMENTS MADE FROM PROBE TRANSDUCER)

<« GAP WAS 1/4 IN. :
ACOUSTIC CAVITY
PROBE WITH MICROPHONE OF INERT MODEL
/ / POSITION W-9
l 1 4
=]
e p = o E—] o T - A INDICATES
1 2 3 4 5 6 7 8 9 PROBE POSITION
L~ L—W
PROBE B | | | | | | | | | |
STATION —® 0 2 4 6 8 10 12 14 16 18 20 22
A A
X 37.07 2613
£ 147.9 142.4
o/ f 0.251 0.254
A A
26.39 32.99
£ 366.2 369.1 ©< VERSUS PROBE
CATION
oC/f 0.072 0.089 ;;’A'S‘ERED o
A A A A PROBE
oK 31.42 32.99  33.30 34,87 (Hair 2ONER
£ 891.4 897.3 900.9 899.8 POINTS METHOD)
o</f 0.035 0.037 0.037 0.039
A A
o< 51.21 58.75
£ 1167.8 1170.6
X /f 0.044 0.050
A A
oC 38.10 37.33
£ 147.0 141.4
o /£ 0.259
A A
o< 24.16 28.37
g 365.3 367.3 o< VERSUS PROBE
o< /f 0.066 0.077 LOCATION
A A A MEASURED
o< 29.86 29.84 34.04 ON PROBE
f 890.1 896.2 898.5 (DECAY METHOD)
o« /f 0.034 0.033 0.038
A
o< 51.76
f 1165.2
oK /f 0.044
23
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TABLE 3. VARIATION IN FREQUENCY AND DAMPING AS A FUNCTION OF PROBE POSITION
FOR THE TWO DIFFERENT DAMPING MEASUREMENT METHODS
(MEASUREMENTS MADE AT WALL POSITION NO. 9)

- GAP WAS 1/4 INCH ACOUSTIC CAVITY

PROBE WITH MICROPHONE OF INERT MODEL

/ L4

POSITION W-9

L

A INDICATES PROBE

o o | =) J g g J [
I 1 2 3 4 5 6 7 8 9 POSITION
PROBE b R I I | | i [ b I
STATION —® 0 2 4 6 8 10 12 14 16 18 20 22
A AT 'y A
< 52.78 50.27 39.58 39.90
f 149.3 149.3 146.3 142.9 OC MEASURED AT
«/f 0.354 0.337 05271 0.279 W-9 FOR
A a A VARIOUS
o< 30.16 32.67 32.99 PROBE LOCATIONS
£ 895.2 895.5 890.2 (HALF POWER
K/ f 0.034 0.036 0.037 POINTS METHOD)
& &
ol 36.80 32.58
f 149.4 146.2 o< MEASURED AT
o« /f 0.246 0.223 W-9 FOR
R R T A VARIOUS PROBE
oC 28.65 31.60 LOCATIONS
f 894.2 889.4 (DECAY METHOD)
o< /f 0.032 0.036
24
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TABLE 4. VARIATION IN FREQUENCY AND DAMPING AS A FUNCTION OF MEASUREMENT
LOCATION FOR THE TWO DIFFERENT DAMPING MEASUREMENT METHODS
PROBE NOT INSTALLED
END E (SKETCH SHOWS TRANSDUCER WALL LOCATIONS)
A" L=} L= L™= ) 1= ] 1% k= L=} L= ]
| it 2 3 4 5 6 7 8 9 I
< 31.37 30.39 30.2 30.5 27.19 32.30
E : : 44,
143.3  142.9 143.0 142.7 141.2 144.2 e S
o« /f 0.219 0.213 0.211 0.214 0.193 0.224
o< 27.65 28.59 33.60 28.27 65.60% 33.90
_ HALF POWER
£ 145.1  145.1 144.9 lab . 4 142.6 145.9 POINTS METHOD
o<C/f 0.191 0.197 0.232 0.196 0.460 0.232

*Noise Response

I ——
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Another comparison between methods can be obtained from the data
shown in Table 5. The data shown in this table were obtained with the
pressure transducer in the end plate, no probe installed, and all wall
locations plugged with cap screws. Notice that damping increased with
pressure for the first mode but decreased with pressure for other modes.

TABLE 5. DAMPING AND FREQUENCY MEASUREMENTS
USING TWO METHODS AT TWO PRESSURES*
Decay Method Half Power Points Method
ATM Press/End Meas ATM Press/End Meas
fo a alf fo o alf
143.3 31.37 0.219 145.4 27.96 0.192
364.3 21.49 0.059 369.9 23.88 0.065
878.7 25.58 0.029 891.3 29.22 0.033
1146.1 34.63 0.030 1162.7 38.01 0.033
Decay Method Half Power Points Method
300 psig Press/End Meas 300 psig Press/End Meas
£ a a/f £ a a/f
0 o
138.5 51.45 0.371 139.1 62220 0.447
373.4 18.64 0.050 374.2 16.34 0.044
903.3 8.83 0.010 904 .7 9.74 0.011
1178.0 22.88 0.019 1179.8 20.11 0.017

*Al1l with no probe and 1/4-inch gap.

3 Attempt to Model a Cylinder

Because damping values were found to decrease with increasing
pressure for the higher frequency modes, an attempt was made to simplify
the test configuration so that results could be more easily interpreted.
The variable gap on one end of the inert model was adjusted for a 0.0 inch

gap width. On the other end of the model, a plastic spacer was machined
to fit into the gap to give a cylindrical tube configuration. Results
from the simple cylinder are shown in Table 6.

26
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TABLE 6. SIMPLE CYLINDER TEST RESULTS

First Longitudinal Mode Second Longitudinal Mode
0 psi f = 316 Hz f = 626 Hz
. -1 =ik
a = 384 sec a = 305 sec
300 psi f = 380 Hz f = 658 Hz
W -1 =1
a = 182 sec a = 98.9 sec

The results shown in Table 6 show that damping values are un-
realistically high for the cylinder configuration. The various small cracks
in the cylinder model were suspected to have caused the extra high damping
values. Therefore, the cylinder was modified by using O-rings on each
side of the plastic spacer and by using a sealing putty (CS) in all cracks.
The modified cylinder at 0 psi yielded the data shown below.

First Longitudional Mode Second Longitudinal Mode
f = 296 Hz f = 604 Hz
~1 =i}
a=171.9 sec a = 150 sec

The damping values were greatly reduced by the modifications made
to the original cylinder but the question of the effect of CS on the damping
was not ascertained. The plan to study a simple cylinder was abandoned
because of the high sensitivity of damping to small changes in the model
configuration. To study damping in a simple cylinder, a new model of clean
design and an uncoupled driver would be required.

4. Check on Linearity

Most of the tests were conducted with an 8 volt (rms) input to
the driver. To evaluate whether measured values would be sensitive to
variation in the input power, damping and frequency measurements were made
with input levels of 2, 4, and 8 volts. The results are shown below:

Input Level Decay Method Half Power Method Frequency
(V) (sec”l) (sec™l) (Hz)
8 a= 84 a= 64 297
4 a= 83 a=178 297.8
2 a= 84 a= 84 296.9
27
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The test configuration used to obtain the data in the tabulation was the
simple cylinder sealed with CS as previously described.

5. Initial Inert Model Baseline Data

The inert model was designed with an adjustable gap width so the
gap could be varied to approximate conditions in a live-propellant LAM at
various pressures. Several schemes were considered for comparing data
from the inert model with data from the LAM. For example, the gap con-
figuration in a LAM as a function of pressure could be estimated from finite
element static pressure analyses. Then the variable gap in the inert model
could be adjusted to give an equal gap volume at the particular comparison
pressure. Another method was to adjust the inert model gap to give the same
resonant frequency as that measured for a LAM at a particular pressure.

To definitely characterize the inert model, the frequency and damping
were measured at gap widths of 0, 1/32, 1/16, 1/8, 3/16, and 1/4 inch for
the first 5 strong modes, (the 625 Hz mode was omitted), at 10 psi and 300
psi chamber pressures. The results are shown in Figures 6 through 10 for
10 psi chamber pressure and in Figures 11 through 15 for 300 psi chamber
pressure. The decay method was used to measure the damping factors.

B. LAM-179 TESTING
)% Thermal Tests

When a motor with live propellant is pressurized to high pressure
levels, care must be taken not to pressurize fast enough to cause dangerous
heating. To ensure safe heating rates, some temperature measurements were
made during pressurization through different sizes of orifices.

The motor was pressurized with nitrogen gas through a hole in the
heavy aft closure plate. A thermocouple was taped to the grain near the
forward end of the LAM. An orifice of approximately 0.012-inch-diameter
was partially blocked by inserting a wire of approximately 0.008-inch-diameter.
Using the partially blocked orifice, the motor was pressurized to 1400 psi
at a rate of less than 5 psi/sec. Initially, a temperature rise of 6° F
was measured. After the initial temperature increase, no further increase
was detected.

The orifice was then changed to give an unrestricted hole with an
approximate diameter of 0.010 inch. The new orifice allowed pressurization
to 1500 psi at a rate of approximately 9 psi/sec. The maximum temperature
increase for this pressurization was 18° F. Most of the temperature in-
crease occurred during pressurization from 0 to 250 psi with little tempera-
ture change being detected from 500 to 1500 psi.
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2. Mode Shapes and Natural Frequencies

LAM-179 was pressurized to 10 psi with nitrogen gas and acoustic
resonances were found at 154, 378, 631, 858, and 1096 Hz. Using the probe
system, the mode shapes were plotted for all except the 631 Hz mode. The
631 Hz mode was weak and not well defined, as was the case with the inert
model at 625 Hz. The mode shapes are shown in Figures 16 through 19.

After the mode shapes were measured, the probe system was removed
and the forward end closure containing a pressure transducer was installed.
A frequency sweep was made and the transducer response was plotted using
an X-Y recorder. The results are shown in Figures 20 and 21. The value of
the voltage read on the voltmeter at each resonance peak is noted near the
peak on the plots of Figures 20 and 21. Since the voltage is directly pro-
portional to pressure, the voltage values can be considered to be normalized
pressures. The values of normalized pressure show the relative magnitudes
between peaks but give no indication of absolute pressure level with respect
to a known reference.

Comparing the LAM frequencies with the inert model frequencies,
both measured at 10 psi and with the inert model having a gap of 1/4~inch,
shows good correlation between the two tests. For example, first mode fre-
quencies of 154 Hz for the LAM versus 151 Hz for the inert model; second
mode frequencies of 378 Hz for the LAM compared with 371 Hz for the inert
model, etc., indicate that a 1/4-inch gap inert model nearly matches a LAM
with 10 psi pressure. This was surprising since finite element results
indicated a very small gap would occur in the LAM at 10 psi. However,
closer examination of the LAM indicated an initial (O pressure) gap of 0.10-
inch to 0.15-inch. The LAM's were constructed in a standard configuration
which included a nylon (or similar material) netting in the dome cavity to
prevent dome sticking under ignition pressurization.

3. Mode Shapes and Frequencies Using Helium Gas

The original program plan called for the use of helium and nitrogen
gas mixtures to shift the acoustic natural frequencies with respect to the
structural natural frequencies. Therefore, acoustic modes and frequencies
were studied with helium in the LAM. The LAM was pressurized to 100 psi
using helium and then depressurized to a level of 10 psi. With helium
in the motor, the first mode occurred at 250 Hz and the second mode at
611 Hz. The mode shape for the 250 Hz mode is shown in Figure 22.

At this point in the testing, the driver failed. When the
driver was replaced and the LAM was again pressurized to 10 psi with helium,
the 250 Hz mode had shifted to 340 Hz and the 611 Hz mode had shifted to
822 Hz. Apparently different amounts of residual nitrogen or air was
present in the LAM for the two tests. An attempt was made to clear out
residual gases by pressurizing and depressurizing the LAM with helium four
times. The first, second, fourth, and fifth modes were then found to occur
at frequencies of 406, 978, 2228, and 2873 Hz, respectively. The correspond-
ing modes using nitrogen occurred at 154, 378, 858, and 1096 Hz. The ratio
of frequency with helium to frequency with nitrogen averaged 2.6.
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4. Damping and Frequency Measurements Using Nitrogen and Helium

The decay method was used to measure damping in LAM-179 with dif-

ferent gas mixtures. To obtain a particular gas mixture, for example, 50
percent helium and 50 percent nitrogen, the LAM was pressurized to 50 psi
using nitrogen and then from 50 to 100 psi using helium. The motor was
then blown down to 10 psi for testing. The frequency obtained using a
particular gas mixture probably provides a better indication of the actual
gas mixture that resulted from use of the above mixing procedure. The
measured damping and frequency values are given below:

Nominal Gas Mixture

Mode 100% No 10% N»-90% He 50% Np-50% He 100% He

Damping (a) (sec_l)

154 Hz 43 67 109 133
378 Hz 59 77 i =

858 Hz 130 214 - P
1096 Hz 83 == - 290

Frequency (f) (Hz)

154 Hz 154 203 257 406
378 Hz 378 501 665 978
858 Hz 858 1131 e 2228
1096 Hz 1096 e = 2873

Data were omitted from the tabulations because the corresponding modes were
weak and the noisy data could not be reduced with confidence. In fact,

the damping of values 130 and 290 in the tabulations are questionable
because of noisy data.

i Damping and Frequency in LAM-179 as a Function of Pressure

Using nitrogen to pressurize the LAM and the decay method to
reduce the damping measurements, the damping and frequency were measured at
various pressures from 10 to 1500 psi. The results are shown in Table 7.
Results for the first mode are plotted in Figure 23.
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TABLE 7. DAMPING AND FREQUENCY AS A FUNCTION OF
PRESSURE FOR LAM-179

P Pressure (psig)
a(sec )
Mode f(Hz) 10 300 500 900 1100 1200 1350 1500
154 Hz o 43 88 52 43 o = 27.6 27
£ 154 136 125 116 = — 114 114
378 Hz a 59 49 74 i = 81 = 37
i 378 353 330 332 - 321 = 324
858 Hz a 130 346 - — 112 —— —-= -
£ 858 | 945 | -- | -- |e21 o R
1096 Hz pA 83 | 217 | - | —- | - |- -~ | -
t 1096 j1165 | —~ | — | — | - | - | -

As before, some modes were too weak to produce reliable data for some con-
ditions so that there are quite a few blank spaces in the table.

C. LAM-180 TESTING

Using nitrogen gas the first three prominent modes in LAM-180 were
checked. Resonances were found at 161, 386, and 805 Hz. The 600 Hz mode
was either absent or very weak. The mode shapes were essentially the same
as those determined for LAM-179 for frequencies of 154, 378, and 858 Hz,
respectively. Using 100 percent helium gas in the motor gave first and
second mode frequencies of 429 and 1018 Hz with approximately the same
shape as the previous first and second LAM modes.

The damping and frequency measurements as a function of pressure appear
to contain a testing error because the trend is not in agreement with
previous test results. The main discrepancy is that frequency and damping
do not change significantly with pressure. The damping and frequency
measurements for LAM-180 are given in Table 8. Only the first mode was
examined.

B, ADDITIONAL INERT MODEL TESTING

Y. Additional Baseline Data

After the LAM testing was completed, the inert model was again
tested to provide additional baseline data with better pressure resolution.
Tests were run to measure first mode frequency and damping as a function
of pressure for gap sizes of 0.0, 0.18, and 0.49 inch. The results are
shown in Table 9. The damping has also been plotted in Figure 24 along
with results from LAM-179 which were plotted for comparison. The difference
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between LAM damping and inert model damping was expected to increase mono-

tonically with increasing pressure.

Figure 24 shows that the difference

between LAM and inert model damping does not increase monotonically.

TABLE 8.

DAMPING AND FREQUENCY AS A FUNCTION OF
PRESSURE FOR LAM-180

Pressure (psig)

Frequency (f) (Hz)

Damping (@) (sec™l)

0

10
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500

148
158
158
156
156
157
157
158
158
160
158
158
159
158
159
159
159

44
44
9
43
42
47
49
43
41
43
47
42
47
46
44
49
47

TABLE

ADDITIONAL FREQUENCY AND DAMPING DATA

FOR THE INERT MODEL

Gap 0-Inch Gap = 0.18-1Inch Gap = 0.49-Inch
Pressure
(psig) f(Hz) a(sec™1) f(Hz) a(sec™l) f(Hz) a(sec™1)
0 187.2 28.7% 15k:0 31.6 124.1 31.6
10 190.1 3072 150.9 36.0 123.3 343
100 189.4 362 145.2 559 121.2 49.6
200 187.5 46.9 141.6 28.3 118.1 37.2
300 186.8 45.4 140.4 24.2 116.5 26.9
400 186.4 51.4 139.4 20.3 115.6 246
500 185.0 56.0 139.2 19.4 L16.7 19.0
600 180.9 617 139 1 18.3 El5.1 16.0
800 179.5 62.4 138.8 16.0 114.8 13.4
1000 L% 39.0 139.2 15.8 LS. 1 LT 3
1200 i - e i 115.8 10. 7
1250 117.6 53.4 1393 15.5 e i
1300 - e e e L16.3 10.4
1400 e i = i 116.9 11.4
1440 i . - e 1176 e d
1500 L6 6. L 141.5 152 = —
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DAMPING COEFFICIENT, OC(SEC—l)

90
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70

60 i ()-.-‘> INERT MODEL GAP = 0

. N

40

30 k\\\‘\;

LAM 179

PAY

20 —" INERT MODEL GAP = 0.18 ___
g . Pt JH |‘_U
10
INERT MODEL GAP = 0.49
0
0 200 400 600 800 1000 1200 1400

PRESSURE (PSIG)

Figure 24. Baseline Damping Data from Inert Model Compared
to Results from LAM-179

46

- ST et g g i T = . Vo RE o e 2 T ‘—,,w\m-————?




2, Investigation of Speaker Coupling

Because damping measurements on the LAM's and on the inert model
did not produce the expected results, consultant Dr. Fred Culick was asked
to examine the experimental set-up. Dr. Culick suggested trying a smaller
hole between driver and acoustic cavity and fastening the driver down
more firmly. The driver had previously been held in place by polyurethane
foam packed in the driver cavity.

A new end plate was fabricated with a 1/4-inch diameter hole
separating the driver cavity and the acoustic cavity. Measurements made
using the 1/4-inch diameter hole are given in Table 10. The results are
significantly different than those obtained with the regular end plate with
a 1-3/8-inch diameter hole.

TABLE 10. DAMPING AND FREQUENCY MEASUREMENTS MADE ON THE
INERT MODEL USING AN END PLATE WITH 1/4-INCH
DIAMETER HOLE (GAP = 0.49-INCH)

Pressure (psig) Frequency f (Hz) Damping a (sec )
0 12307 noisy (26-43)
100 121.4 45.4
200 119.0 44,1
300 117.6 36.4
400 116.1 29.99
500 114.8 24.36
600 114.2 21.60
y 800 113.7 17.43
y: 1000 i3 el ot 5. 78
1250 114.7 14.07
1450 162 14.74

Next, an endplate with a 1/16-inch diameter hole and a provision
for rigidly mounting the driver, was fabricated. The endplate, complete
with new driver, was installed on the inert model. The pressure tests were
repeated and the results are shown in Table 11 and are plotted in Figures
25 and 26.

Data in Tables 10 and 11 show that use of the modified endplate
resulted in drastically different response measurements. It thus appears
likely that all data gathered during this program are invalid. There is
no reason to accept the data from the last test (Table 11) as valid until
further studies show that the particular driver-endplate design yields
an uncoupled acoustic cavity response.
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DAMPING COEFFICIENT,!OC(SEC_I)

FREQUENCY (HZ)

50
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20
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130
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110

(Gap =

0.49 IN.)

RESPONSE OF MODIFIED TEST,
1/16-IN.-DIA HOLE FOR DRIVER
AND RIGID DRIVER

ATTACHMENT

e

RESPONSE OF ORIGINAL TEST
CONFIGURATION WITH
GAP = 0.49 IN.

Ve

O i
~
\~—~’ /
0 200 400 600 800 1000 1200 1400 1600
PRESSURE (PSIG)
Figure 25. Damping Factor Versus Pressure for

End Plate with 1/16 Inch Diameter Hole

IN.)

MODIFIED TEST
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Figure 26. Frequency Versus Pressure for End Plate

with 1/16 Inch Diameter Hole
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TABLE 11.

DAMPING AND FREQUENCY MEASUREMENTS MADE ON THE
INERT MODEL USING A 1/16-INCH DIAMETER HOLE IN

THE END PLATE (GAP = 0.49 INCH)

Pressure (psig) Frequency f (Hz) Damping a (sec_l)
20 123.8 15,19
100 123.9 17.69

200 2355 12.28 (noisy)
300 123.6 19.86
400 1.23:9 20.91
500 15242 22.69
600 124.9 23.48
700 125.1 24 .49
800 124.9 25.11
1000 125.5 21.30
1200 127.5 23.83
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SECTION V
PROPELLANT DYNAMIC PROPERTIES DETERMINATION

Task II of the program called for a NASTRAN analysis of the LAM's.
The NASTRAN models included the propellant grain. It was necessary to
know the grain dynamic moduli to obtain a reasonable representation of the
viscoelastic characteristics of the grain. A well established, reliable,
accurate, and universally acceptable method for measuring grain dynamic
propertics at frequencies up to 1000 Hz does not exist. The program plan
stated that the Gottenberg torsional shear testing machine would be used
if a better method could not be found.

Various problems were experienced with the Gottenberg machine. To
provide data for the program, stress relaxation data were converted to
dynamic moduli. This section discusses the efforts to obtain data from the
Gottenberg machine and presents the data obtained by converting relaxation
moduli.

A. DYNAMIC MODULI FROM STRESS RELAXATION DATA

Tensile stress relaxation modulus values were converted to dynamic

moduli for the three propellants of interest, VRX-2, VSF-3, and FKM. Two
different methods were used to do the conversion: (1) The power law

modulus assumption method, and (2) the Fourier transform integral conversion
method. A memorandum giving complete details of the conversions is included

as Appendix A. The converted moduli are shown in Appendix A, Figures A-3
through A-8.

B. THE GOTTENBERG TORSIONAL SHEAR TESTING MACHINE

The apparatus referred to as the Gottenberg Testing Machine is des-
cribed in a report by Gottenberg and Christensen where it is referred
to as the High Frequency Apparatus. The apparatus was designed to apply
forced torsional oscillations to a right circular cylinder whose ends are
bonded to rigid boundaries. The apparatus was acquired by Hercules from
Colorado University for use on this and other projects.

Various problems were experienced in attempting to use the testing

machine. The fact that the machine is cumbersome slowed the work to resolve
the problems. The machine and instrumentation must be caiibrated and
(2) I

Gottenberg, W. G. and Christensen, R. M., On the Experimental Determina-
tion of the Complex Shear Modulus of a Linear Isotropic Viscoelastic
Solid, 6121-6777-RU0O00, EM 13-14, Space Technology Laboratories, Inc.,
One Space Park, Redondo Beach, California, 1 June 1963.
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adjusted at each frequency using a steel specimen in place of propellant.
The machine must then be disassembled and then reassembled with propellant
in place of the steel calibration sample. It must therefore be disassembled
and reassembled twice for each different test frequency. Another trouble-
some feature is that the waveform becomes extremely distorted at a certain
input level and the level at which the extreme distortion occurs must be
determined at each test frequency. According to the machine designer, Dr.
Gottenberg, tests should be run at a level below the distortion threshold.

When the various problems had apprently been overcome, the machine was
used to measure the dynamic shear moduli of VSF-3 propellant at two different
frequencies. At a frequency of 250 Hz, the real part of the shear modulus
was measured to be 8566 psi. This compares with an approximate value of
2366 obtained by converting relaxation modulus data. The test results are
higher than the estimated modulus value by a factor of 3.6, but the estimate
could be inaccurate. Past experience with converting relaxation modulus
data to dynamic moduli indicates that only a moderate degree of accuracy
can be expected.

To evaluate the procedure and testing set-up currently being used
to obtain data with the Gottenberg machine, samples of FKM propellant were
prepared and tested. FKM was selected because data from an earlier use of
the Gottenberg machine were available for comparison. Considerable con-
fidence was placed in the earlier FKM data because a careful evaluation
indicated that measured values were quite reasonable. Dr. Gottenberg per-
sonally assisted in the acquisition of the earlier FKM data approximately
6 years ago. At 250 Hz, the earlier FKM data shows a real shear modulus of
1550 psi. The current test program yielded a value of 2878 psi, still too
high by a factor of 1.86. This result was fairly encouraging because small
differences in the manufacture of FKM over 6 years time and lot-to-lot
variations could explain a large part of the difference. The corresponding
FKM modulus from converted relaxation data is 1400 psi.
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SECTION VI
STRUCTURAL DAMPING AND ACOUSTIC ANALYSES

The analysis work in this program was originally directed toward
demonstrating the accuracy to which structural damping rates could be cal-
culated. In keeping with the original objectives of the program, a NASTRAN
model of a LAM was constructed and analyzed. Because of problems being
experienced with the experimental work of Task I, the analysis effort was
expanded to include a rod-organ pipe model and methods of solution other
than NASTRAN.

Despite the availability of general purpose dynamics codes that could
be easily adapted for structural damping calculations, relatively little
effort has been expended in this area. The early experimental and analyti-
cal work of Ryan, Coates, and Baer(3), experimental studies at Thiokol (%),
and analytical work of Anderson(5 , comprise the published structvral damp-
ing applications in the solid rocket industry. The more recent and exten-
sive work of Anderson involved the application of a Hercules finite-element
code, developed originally for grain vibration studies, to the calculation
of acoustic modes and frequencies, as well as structural damping. The
NASTRAN code(6) can also be used for structural damping calculations with
little or no modification. In fact, any general purpose dynamics code
that considers viscous damping and has an eigenvalue cr frequency response
capability can be used for structural damping calculations. Fluid behavior
can be approximated by assigning solid elements a very low shear modulus
in comparison to the bulk modulus.

The code used by Anderson has overlapping tension and shear elements
to represent the grain and special fluid elements for the acoustic cavity.
The code solves only the frequency response problem. The damping exponent,
a, is obtained from the ratio of the energy loss rate to the stored energy

3 W s . : :
L.e., a = L)2 W It is necessary to excite the acoustic cavity at a selected

(J)Ryan, N. W., Coates, R. L., & Baer, A. D., "Participation of the Solid
Phase in the Oscillatory Burning of Solid Rocket Propellants,'" Ninth

Symposium (International) on Combustion, Academic Press, (1963).

(A)Stibor, G. S., Poseidon C3 First Stage Motor Acoustic Studies Simula-

tion and Analysis of Observed Static Test Phenomena, Report No. TWR-
4209, Thiokol Chemical Corporation/Hercules Incorporated Joint Venture,
24 August 1970.

(5)

Anderson, J. M., "Structural Damping of Acoustic Cscillations in Solid
Propellant Rocket Motors,'" Eighth JANNAF Combustion Meeting, CPIA
Publication 220, November 1971.

The NASTRAN User's Manual, Level 16.0, NASA SP-222(03), March 1976.

(6)
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node and perform a frequency sweep to achieve a resonant condition. Although
the code does not use the Herrmann reformulation(7) for Poisson's ratio near
0.5, acceptable propellant modeling is still accomplished.(S)

The NASTRAN code has previously been used in combustion instability
studies to obtain acoustic modes and frequencies and/or component vibration
levels. However, in this program, the NASTRAN code was used as the primary
tool for structural damping calculations. With the NASTRAN code it was
necessary to model the grain with 3-D elements, even though a 2-D solution
was desired, because of the solid-fluid coupling procedure used in the
formulation. The available versions of NASTRAN do not contain reformulated
grain elements. Hercules has installed a reformulated 3~D element into
their modified Level-15 version. The damping exponent obtained directly
from the complex eigenvalue approach is generally more desirable because
the modes and frequencies are obtained directly, without need for a resonant
frequency search.

The LAM NASTRAN model was analyzed using both the frequency response
method and the eigenvalue method to obtain a comparison. In addition to
the LAM analyses, this section of the report covers acoustic cavity analyses
and the rod-organ pipe study. The acoustic cavity analyses were conducted
to obtain natural frequencies and mode shapes for comparison with data
from the inert model. The rod-organ pipe study was conducted to confirm
previous analysis results and to provide a better understanding of the effect
of pressure on structural damping. The rod-organ pipe model was also used
to help resolve differences between NASTRAN and the Hercules finite element
code.

A closed-form analytical solution was obtained for a damped rod-organ
pipe model to referee a subtle difference in behavior predicted by the two
finite element approaches. The analytical solution provided structural
damping levels consistent with those of the NASTRAN and the Hercules over-
lapping element codes. However, complex structural-acoustic coupling
behavior with significant frequency shifts is predicted when fundamental
structural and acoustic modes are in close proximity. The two finite
element codes differ in their ability to match the analytically predicted
frequency shifts. The overlapping element code agrees better with the
analytical solution than NASTRAN, but both codes provide measurable fre-
quency errors.

(7)Herrmann, L. R., "Elasticity Equations for Incompressible and Nearly
Incompressible Materials by a Variational Theorem," AIAA Journal 3,
No. 10, 1965.

(8)Anderson, J. M., & Christiansen, H. N., '"Behavior of the Finite Element

Stiffness Method for Nearly Incompressible Materials,'" Sixth Annual
Meeting of the ICRPG Mechanical Behavior Working Group, 1967.
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All analysis work mentioned above was performed under Task II of this
program. This report section describes the analyses and presents the
results.

A. APPROACH

L. LAM NASTRAN Model

A finite element model of a LAM was made to include both gas
(fluid) and grain (solid) elements for analysis using the hydroelastic
analysis capability in NASTRAN. By using a complex eigenvalue solution with
such a model, the damping factor (@) and natural frequency (f) can be deter-
mined for any of the natural modes. A computer plot of the LAM model is
shown in Figure 27. The complete LAM was simulated by applying symmetrical
boundary conditions to the 2 boundary surfaces of a 5-degree segment model.
Reformulated solid elements (CDUM) and fluid elements were used to represent
the grain and acoustic cavity respectively. The polyurethane foam surround-
ing the acoustic driver (speaker) was modeled as a low modulus material with
no acoustic cavity. The elements representing the gas in the acoustic
cavity are not shown in the figure. The gas elements have the same spacing
as the grain elements and one gas element covers the distance from the
centerline to the grain surface. Note that the particular LAM model shown
in Figure 27 has a small dome cavity modeled in the forward end.

Orthotropic stiffness properties were used in the case model.
The case thickness used was 0.08 inch in the cylindrical section and case
density was 1.9161 x 10-% 1b sec2/in.4. Propellant density used was 1.6278
x 1074 1b sec?/in.%. Propellant stiffness for formulation VSF-3 at 154 Hz
was represented by a modulus of 6200 psi (real part of the complex modulus)
and a loss tangent of 0.5323 (ratio of imaginary modulus to real modulus).
The corresponding Poisson's ratio for the propellant was 0.49898. For the
gas, (nitrogen at 10 psig), a density of 1.638 x 1077 1b sec?/in.% and a
bulk modulus of 31.47 psi were used. The values given are typical and
some were varied between computer runs.

2. Acoustic Cavity Model

The acoustic cavity portion of the LAM model was used as a
separate model to represent the inert rigid-walled motor. Typical pro-
perties used were the same as those given for the nitrogen used in the LAM
model. The density and bulk modulus were changed to represent different
pressures in the cavity. The configuration of the acoustic cavity model
was varied to represent no dome cavity, a straight radial cavity (inert
model), and a curved cavity (LAM). Only real eigenvalue analyses were
conducted on the acoustic cavity model because no damping was included in
the gas elements.
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3. Rod-Organ Pipe Model

Previous structural damping studies have been based on a rod-
organ pipe model.(8,9)  The rod-organ pipe model is a simple one-dimensional
(1-D) model that has the essential elements to study structural damping in
a simple form. The configuration of the model used in this program is
shown in Figure 28. The damping of interest occurs when the undamped gas
in the organ pipe is oscillating in a longitudinal mode and the heavily
damped propellant rod is being driven by the oscillating pressure applied
to the rod by the gas at the rod-pipe interface.

In the current structural damping study, a comparison was

initiated between the NASTRAN and the Hercules overlapping element solutions.

In general, the two methods provided similar results. However, there were
disturbing differences in predicted resonant frequency shifts as the fluid
properties were varied to simulate different motor operating pressures. It
became evident that a referee was needed to establish the correct simula-
tion. The rod-organ pipe problem was selected for study because of the
earlier work and because it is 1-D and thus can be solved in closed form.

A solution comparison and parametric study for the rod-organ pipe are

given below. The description of the rod-organ pipe analysis is a condensa-
tion of a more extensive report.(lo) The reference is included in this
report as Appendix B.

A schematic of the rod-organ pipe is shown in Figure 28. The
organ pipe has rigid walls except where it interfaces with the rod. The
rod is fixed on the end opposite the organ pipe. For typical rocket motor
properties, the organ pipe will tend to resonate in closed-closed modes
because of the high impedance of the rod. The rod will tend to resonate
in fixed-free modes because of the low impedance of the organ pipe.

A closed-form analytical solution was obtained for the rod-organ

pipe for assumptions of long, slender behavior (radial inertia is neglected).

Physical behavior within the individual rod and organ pipe components is
assumed to be described by the following governing equations.

Continuity P. = -0, (1)

Dynamic State = c2(pP +T‘%) (2)

Momentum Po u. = ~pyx (3)
(9)MCC1ure, F. T., Hart, R. W., & Bird, J. F., "Acoustic Resonance in

Solid Propellant Rockets," J. Appl. Phys., Vol 31, No. 5, May 1960.

(IO)Peterson, N. L., Analysis of Rod-Organ Pipe Structural Damping Model,

Hercules Memo, Misc/6/20-7482, 14 June 1977.
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The assumptions are used that particle velocities are zero on the external
ends of the coupled system, and that both pressure and particle velocity
are continuous at the coupling interface. From these assumptions, the
characteristic equation for free oscillations in the coupled rod-organ
pipe is obtained in the form

tan (KlLl) . fﬁKl %
tan (KpLp) szz :

¢'
Wria i ()
e 2 =

where K. & — Y. + iX,
s A
ey
D B
WJ. = tan ﬁ‘r_ (4)
J
g 5 /6
and \/_R'i - ((1—01J.)h + (wrj) } for j = 1, 2.

The complex wave numbers, Kj, create a computational difficulty
in the direct solution of Equations (i) due to their inclusion in the tri-
gonometric functions. The equations may be transformed into the coupled
real equations

9z
-tsl'.rn-'—:'-,:—‘ﬂ-L } =0

2
e

R 2L

ST e P29
and %1 QFL{QJ-SLH 3—1 - Xy.cos = } =0
where B s;nh(QXj)
] cosh(21(j + cos(2Yy) : (5)
: sin(2Y4)
X cosh(2X ) + cos(2Y,)

p1e1r /Ry x
fyop Vi (3= 1, 2)

and ) i%
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This system of equations was solved on a digital computer using
a generalized Newton's method to find the values of w and a from initial
estimates input through an interactive control terminal.

The finite-element solutions for the rod-organ pipe have radial
inertia. In the overlapping element solution, only 'tension'" elements
need to be used. The organ pipe is simulated in a pure 1-D sense (no
radial inertia) and the rod has lumped radial inertia at its outer boundary
nodes. In the NASTRAN solution, some degree of radial inertia is present
in both the rod and organ pipe. The organ pipe was represented alternately
with NASTRAN using fluid and reformulated solid (CDUM) elements.

Comparison solutions were obtained for the rod-organ pipe para-
meters given in Table 12. The basic grid networks for the NASTRAN and over-
lapping element solutions used 28 elements, 14 spaced axially in the rod
and 14 axially in the organ pipe. The element lengths were smallest near
the rod-organ pipe interface, and graduated as outlined in Table 12.

Typical propellant properties were used in the compa ‘ison. For one of the
NASTRAN solutions, the basic grid was refined by cut g the radial and
axial grid spacing in half.

TABLE 12. ROD-ORGAN PIPE PARAMETERS FOR
FINITE-ELEMENT SOLUTION COMPARISON

Length of rod, L, (in.) = 9.5
Length of organ pipe, L, (in.) =9.5
Diameter (in.) = 2.0
Fluid density (pressure), = 1,638 x 107! (10), 3.731 x 1078 (500),
P,(P) (psi) 1.101 x 1072 (1500), 1bf sec2/in.%
Fluid speed of sound (in./sec) = 13,860
) S Tl 4
Rod density, Pl (1bf sec”/in. ) = 1.6275 x 10
Rod bulk modulus (psi) = 0.95 x 106
Rod tensile modulus (psi) = 6200
Rod tensile loss tangent, f8 = 0.5323
Node axial locations away from 200 1y 10435 10265 1 L0 Lids 2ol 248,
interface (in.) 3.6 G SRS 6RO T 8D s 9D
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B. RESULTS AND COMPARISONS

I. LAM NASTRAN Model

Results of the LAM analysis using the NASTRAN computer program
are summarized in Table 13. The nomenclature used in the table is listed
below:

E' = Propellant storage modulus (psi)

E" = Propellant loss modulus (psi)

B = E"/E' propellant loss tangent

V = Poisson's ratio

- - 2 s G

P = Mass density (1b sec”/in. )

B = Gas bulk modulus (psi)

f = Frequency (Hz)

Structural damping factor (sec—l)

Q
]

Structural damping was determined by the hydroelastic analysis
option in NASTRAN. This approach calculates the complex eigenvalue solu-
tion for the coupled gas-solid acoustic oscillations. The imaginary part
of the complex eigenvalue is the resonant angular frequency of the coupled
system, while the real part is the structural damping factor,a.

Analysis results of the LAM corresponding to three gas pressures
(nitrogen at 10, 300, and 1500 psig) are shown in the first three cases of
Table 13. 1In these analyses, a 0.16 inch forward flap gap opening at the
grain bore surface (Figure 27) was used for all three pressures. The 0.16
inch gap observed in the unpressurized LAM was probably caused by thermal
shrinkage during motor cure and the nylon webbing as previously discussed.
As the LAM is pressurized, the flexible case will grow radially and the flap
gap will tend to open up more. The radial growth of the LAM case and the
forward flap gap opening will increase the total acoustic cavity volume
and thus change the coupled acoustic frequency and structural damping.
An ideal way is to use the deformed LAM geometry for frequency and struc-
tural damping calculations for each pressure load. For preliminary study
of the LAM model, the geometry was assumed to be the same for all pres-
sure levels. It should also be pointed out that in these three analyses,
the complex eigenvalue output includes a rigid body motion mode and a
natural mode for the speaker. These two modes were subsequently eliminated
by constraining the axial motion of the LAM and the motion of the speaker
to the aft closure. Cases 4 and 5 in Table 13 show the results. Com-
parison of analytical results with experimental measurements is shown in
Figure 29. Frequency agreement is excellent, which indicates the LAM case
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growth and further flap gap opening as a result of pressurization are

small. The damping measurements from the LAM tests are the total damping
caused by both structural damping and boundary layer shear damping. To
obtain the structural damping comparable to the NASTRAN results, the boundary
layer shear damping measured from the rigid-wall motor test must be sub-
tracted from the total damping. The difference in a shown in Figure 30

is therefore expected.

The dynamic moduli of the propellant used in the NASTRAN analyses
were the converted data calculated from tensile stress relaxation modulus
values. These data may differ from the dynamic moduli using the Gottenberg
torsional shear test. To assess the effect of 8 on frequency and struc-
tural damping, an analysis was performed using 8 = 0.3. Results shown in
case 6 indicates a frequency change of 2.2 percent and a structural damping
change of 37.2 percent. It is apparent that structural damping is strongly
affected by the propellant dynamic moduli. The effect of the flap gap
opening on frequency and structural damping are shown in cases 7 and 8.

The frequency drops off as the flap gap opens up, while the structural
damping does not follow any definite change pattern. Cases 9 through 12
show some real eigenvalue analyses of the LAM.

2. Acoustic Cavity Model

The acoustic cavity analysis results of the inert and LAM models
are shown in Table 14. The objective of this analysis was to determine
the test measurement accuracy for frequency and mode shape. Results of the
NASTRAN analyses indicate that measured frequencies (values in parentheses)
are in good agreement with the analytical predictions. Figure 30 shows the
first longitudinal mode shape comparison between the measured and analytical
data. The measured data were normalized with respect to the maximum pres-
sure which occurred at the extreme radial location of the 1/4 inch gap.
The last case in Table 14 shows the acoustic cavity analysis result of the
LAM. It is interesting to note the first longitudinal mode frequency from
real eigenvalue analysis is identical to the result of a complex eigenvalue
analysis (Case 1 in Table 13).

Js Rod-Organ Pipe Model

A summary of the finite-element solutions for the rod-organ pipe
is given in Table 15. The predicted damping exponent, a, is seen to in-
crease with the gas pressure because the impedance match between the rod
and fluid improves. This behavior is consistent with the earlier work of
Anderson. The values for frequency and damping exponent are in general
agreement, but there are subtle differences of importance. In particular,
the predicted frequency shift with pressure varies with grid refinement
and damping level (loss tangent, f8).
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The damping exponent and frequency for the finite-element solu-
tions are compared with the closed-form analytical solution in Figures 31
and 32. The damping exponent ccmparison as a function of fluid pressure
level (density) is quite favorable; whereas the frequency comparison is
less impressive. With normal propellant damping, the analtyical and over-
lapping element solutions predict little frequency shift; whereas the
NASTRAN solutions indicate a moderate increase in frequency. When the
rod loss tangent is set to zero, NASTRAN predicts little frequency shift;
whereas the analytical and overlapping element solutions predict a moderate
decrease in frequency.

A closed-form parameter study was conducted where the base values
for the rod and organ pipe were as given in Table 16. The rod length was
then varied and the resulting effects on the decay and frequency parameter
calculated (see Figures 33 and 34).

TABLE 16. BASE VALUES OF ROD-ORGAN PIPE PARAMETERS
FOR ANALYTICAL PARAMETER STUDY

Parameter Symbol Value
Density Ratio IH/PZ 10
Rod Length (in.) Ly 10
Pipe Length (in.) L, 10
Rod Sound Speed (ips) C1 6000
Pipe Sound Speed (ips) c, 12000
Damping Parameter 8 0.5

When the length of the rod is 2.5 inches, the uncoupled and un-
damped resonant frequencies of the rod and organ pipe fall on top of each
other. Thus, maximum dynamic participation (damping) of the rod is expected.
The greatest damping occurs for the smallest density ratio, where the
impedances are best matched. Influences of the second, third, and even
the fourth rod modes on the decay parameter are evident, though less impres-
sive than the fundamental.

The influence of the rod length on the (organ pipe) frequency
shift is somewhat involved. The greatest frequency shift occurs for the
lowest density ratio, as expected. A sinusoidal type behavior is predicted
to occur when the uncoupled rod frequencies fall near multiples of the
uncoupled organ pipe frequency. The steep nature of the frequency oscil-
lation near the first uncoupled resonance match is profound and somewhat
unexpected. The maximum deviation of the coupled gas resonance (funda-
mental mode) from the uncoupled value occurs when the uncoupled rod and
organ pipe resonances are slightly removed from one another, rather than
when they are precisely superimposed.
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For the basic finite-element comparison problem, the fundamental
(uncoupled) organ pipe resonance is predicted to occur at 729 Hz, while
uncoupled (and undamped) rod resonances &-e predicted at 162, 487, and
812 Hz. Thus, the organ pipe fundamental occurs between the second and
third rod modes. A larger disparity in finite-element solution results
could be expected if the rod were stiffened to cause a closer proximity
of uncoupled resonances.

The rod-organ pipe solution can be cast in approximately dimen-—
sionless form through the use of the following parameters:

e
c ¢y L2

R e e (6)
c pl €1 2L2

the decay parameter, a./®., is plotted in Figure 35 as a function of the
similarity parameter, [c for the condition of varying component lengths.
Slightly different values for the decay parameter were obtained near the
first rod resonance by varying the sound speeds rather than the lengths
(note dashed curves in Figure 35); thus, [, is not a true dimensionless
parameter. Oscillatory behavior near the relative resonant frequencies of
the rod in the coupled system is evident. The rod resonances occur at

I. = 1/2, 3/2, 5/2, etc. A limiting decay value is approached after the
first three rod resonances are passed. The dimensionless frequency shift,
Af/®., is shown in Figure 36. Extreme oscillatory behavior again occurs
near the fundamental rod resonance.

C. CONCLUSIONS

i 1 LAM NASTRAN Model

The NASTRAN hydroelastic analyses performed on the LAM model
shown in Figure 27 appear to be adequate in predicting the gas-solid coupled
mode frequency. However, a direct comparison of the grain structural damping
factor between analytical and test data cannot be made because of the follow-
ing difficulties:

(a) The geometry difference between the live propellant
motor and the rigid walled model in the area of the
flapped dome. Theoretically, experimental measurement
of the structural damping factor can be obtained by
subtracting the boundary layer shear damping measured
in a rigid-wall motor from the total damping measured
in a live propellant motor, providing that the acoustic
cavity geometry in the two motors is identical. Analyti-
cal results show the structural damping factor is
affected by the forward dome flap cavity.
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(b) The degree of accuracy of the propellant dynamic moduli.
Propellant dynamic moduli converted from tensile stress
relaxation modulus values were used in the NASTRAN
analyses. Past experience with converting relaxation
modulus data to dynamic moduli indicates that only a
moderate degree of accuracy can be expected. Since the
structural damping factor is a strong function of the
propellant dynamic moduli, as shown in the NASTRAN
analyses, accurate dynamic moduli should be used.

(c) The finite-element grid spacing. Frequency and struc-—
tural damping factor are affected by the finite-element
grid spacing. A study of the rod-organ pipe model
showed the coupled gas mode frequency decreased by
2.2 percent and the structural damping increased by
9.5 percent as the number of the solid elements was
increased from 14 to 88. Study of the grid refinement
in the LAM model was not conducted because of the
required long computer time. The finite-element grid
shown in Figure 27 consists of 303 grid points, 29
fluid elements, and 125 solid elements. A typical
computer run for hydroelastic analysis requires about
65 minutes CPU time on an IBM 370-155 computer.

Fi Acoustic Cavity Model

The NASTRAN analyses of the rigid-wall model using the real eigen-
value option are in good agreement with the measured frequencies and mode
shapes. The mode shape agreed better with the pressure transducer data
than did the probe measurements. The analysis predicted a constant fre-
quency for all pressure levels (speed of sound maintained as a constant)
which agreed with the modified test results shown in Figure 26.

3% Rod-Organ Pipe Model

Predicted values of the decay exponent,a, agreed reasonably well
for the cases studied. However, calculated shifts in acoustic frequency
were disturbingly different as the gas density was increased while main-
taining a constant speed of sound (pressure effect). The overlapping
element method agreed better with the analytical solution than did the
NASTRAN. However, this better agreement may be related to the more direct
simulation of the rod-organ pipe with the overlapping element program,
because of its simpler element forms. This program comparison may not
extend into more complex rocket motor simulations.

The analytical rod-organ pipe solution fully supports the
presence of high structural damping levels in structural-acoustic systems
as predicted previously by Anderson. (8) However, the coupled behavior is
complex when uncoupled acoustic and structural resonances are in close
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proximity. Significant frequency shifts can occur in addition to high
values of structural damping, for typical values of the propellant tensile
loss tangent. The level of structural damping is almost directly pro-
portional to the motor operating pressure, assuming a fixed motor configura-
tion. This occurs because of the better impedance match between the grain
and gas with increased gas density.

A detailed parameter study was performed with the analytical rod-
organ pipe soluticn. This study provides a comprehensive understanding
of coupled behavior in structural-acoustic systems with structural damping.
Significant dynamic interaction is predicted when structural and acoustic
modes are in close proximity, even for typical (high) values of the propel-
lant tensile loss tangent.
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SECTION VII
RECOMMENDATIONS FOR FURTHER STUDY

Because of problems discussed in previous sections, this program could
not be successfully completed as it was originally scheduled and budgeted.
The main problem encountered was the unexpected response of the motors as
a function of pressure. Testing in the later stages of the program showed
that an improved driver configuration could possibly solve the problem.
Sufficient data are not available at the present time to establish that
any particular driver configuration is satisfactory. Some additional
experimentation will be required to obtain a satisfactory driver configura-
tion. This experimentation must be performed before evaluation of existing
data or acquisition of additional data will be meaningful. When an adequate
driver configuration has been established new structural damping measure-
ments will have to-be made. Use of a very simple model for initial struc-
tural damping measurements is recommended so that damping caused by cracks,
gaps, and other geometric irregularities will not be an important factor.

Problems with the analytical portion of the program (Task II), were
caused mainly by the lack of agreement between different analysis techniques
for calculating structural damping. The complex eigenvalue solutions
obtained by using the NASTRAN code show some frequency shift with increas-
ing pressure; whereas frequency response solutions obtained using the
Hercules Potential Energy computer program show essentially no frequency
shift with increasing pressure. A rod-organ pipe model closed form solu-
tion was obtained to provide an independent estimate of frequency dependence
on pressure level.

The closed form solutions show a small frequency shift with increasing
pressure. Increasing the grid refinement in the rod portion of the NASTRAN
model has been found to yield a significantly smaller frequency shift than
the original model. This result, which shows good agreement with the closed
form solution, indicates that a study should be made to determine the
degree of grid refinement required to obtain acceptable accuracy using the
NASTRAN complex eigenvalue analysis.

Various problems have been experienced with use of the Gottenberg
dynamic shear modulus tester. Modulus values obtained from the tests are
consistently higher than expected. Recent test values have been compared
with relaxation modulus data converted to dynamic moduli and with data
obtained from the Gottenberg apparatus during the previous test program.
Based on the experience gained to date on measurement of propellant
dynamic moduli, it is suggested that further work is necessary in this area
for the design, fabrication, and verification of a dynamic modulus meas-
uring instrument, applicable to conditions of interest for solid rocket
propellants.
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SECTION VIII
SUMMARY AND CONCLUSIONS
A TASK I

All of the experimental work in the program was performed under Task I.
The program plan outlined a series of tests to be performed on each of two
LAM's and an inert model. Because preliminary results were not as expected,
the experimental task was expanded to study apparent discrepancies and con-
siderably more testing was performed than originally planned.

Acoustic mode shapes and frequencies have been measured successfully
in the past at Hercules during various programs. However, this program
represents the first attempt to measure the damping associated with an
acoustic wave in a cavity. The mode shape and frequency measurements made
on the LAM's and on the inert model were successful and were in good agree-
ment with analytical (NASTRAN) results. The damping measurements were not
considered to be successful.

Initially, damping measurements were hampered by small details that
were apparently unimportant in making mode shape and natural frequency
determinations. The damping was found to vary significantly with changes
in the width of the simulated dome cavity gap. When a plastic spacer was
installed in an effort to convert the inert model into a cylinder, small
cracks around the spacer were found to greatly change measured ‘amping

values. Another problem with the measured damping was the unexpected
measured trend of damping as a function of pressure. These unexpected
damping-pressure trends were responsible for initiating a study of possible

problems wiii: test techniques.

Near the end of the experimental work, some significant changes in
the test set-up were made. The hole between the driver and the acoustic
cavity was reduced in diameter from 1-3/8 inches to 1/16 inch in an effort
to uncouple the acoustic cavity from the driver cavity. In addition, the
driver was mounted rigidly rather than being supported by compressed
polyurethane foam. These changes resulted in a completely different trend
of measured damping as a function of pressure.

The following conclusions can be drawn as a result of the Task I work:

(1) Present test methods are sufficient to determine acoustic
mode shapes and natural frequencies.

(2) Small gaps and cracks and other geometric details can have
a large affect on damping measurements.
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(3) The driver configuration must be designed with care in order
to obtain a response of the acoustic cavity that is not
influenced by coupling between the driver and the acoustic
cavity. The final driver configuration used in the testing
program was found to produce significantly different results
from previous configurations but has not been shown to
produce satisfactory results. Additional study would be
required to obtain a driver design that could be recommended
for future damping measurements in an acoustic cavity.

B. TASK II

Original plans called for analyses to be performed for the same condi-
tions that were used in corresponding tests so that comparisons could be
made between test and analysis results. Initial analyses were conducted on
the LAM motor using test conditions. Calculated natural frequencies and 1
mode shapes were found to be in good agreement with test data. However,
calculated damping values were not in good agreement with measured values
and, furthermore, trends of damping and frequency as a function of pressure
were not in agreement with expectations. The expected trends were estab-
lished from previous analysis work on other programs.

Because of the unexpected trends obtained, the analysis task was
diverted from original objectives, and analyses were performed to verify
previous analysis results. Analyses previously performed on a simple
(rod-crgan pipe) model using a Hercules overlapping element finite-element
program were repeated and results were compared with corresponding NASTRAN
analysis results. The Hercules program showed a nearly constant natural
frequency as a function of pressure whereas NASTRAN predicted a decrease
in frequency with increasing pressure. To assist in evaluation of the
results from the two different finite element programs, an analytical
(closed form) solution was obtained for the damped rod-organ pipe model.

Using the rod-organ pipe model, predicted values of the decay exponent,
a, agreed reasonably well for the cases studied. However, calculated
shifts in acoustic frequency were disturbingly different as the gas density
was increased while maintaining a constant speed of sound (pressure effect).
The overlapping element method agreed better with the analytical solution
than did NASTRAN. This better agreement, however, may be related to the
nore direct simulation of the rod-organ pipe with the overlapping element
program because of its simpler element forms. The program comparison may
not carry over into more complex rocket motor simulations.

The analytical rod-organ pipe solution fully supports the presence of
high structural damping levels in structural-acoustic systems as predicted
previously by Anderson. However, the coupled behavior is complex when un-
coupled acoustic and structural resonances are in close proximity. Signifi-
caut frequency shifts can occur in addition to high values of structural
lamping for typical values of the propellant tensile loss tangent. The
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level of structural damping is almost directly proportional to the motor
operating pressure, assuming a fixed motor configuration. This occurs
because of the better impedance match between the grain and gas with in-
creased gas density.

A detailed parameter study was performed with the analytical rod-
organ pipe solution. This study provides a comprehensive understanding of
coupled behavior in structural-acoustic systems with structural damping.

A significant amount of dynamic interaction is predicted when structural
and acoustic modes are in close proximity, even for typical (high) values
of the propellant tensile loss tangent.

A study of the rod-organ pipe model using NASTRAN indicated that
significant changes in model response occurred when the grid refinement
was changed. An optimum grid refinement was not determined. A study
should be performed to determine guidelines for adequate grid refinement
for such analysis.
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APPENDIX A
DYNAMIC MODULUS VALUES FOR VRA-7, VRX-2, VSF-3
AND FKM PROPELLANTS

Memo from S. W. Beckwith to F. R. Jensen
dated 3 December 1976
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Hercules Incorporated
Bacchus Works
Magna, Utah

3 December 1976

]
TO: F. R. Jensen u Ja
FROM: S. W. Beckwith M
SUBJECT:  DYNAMIC MODULUS VALUES FOR VRA-7, VRX-2, VSF-3, and FKM
PROPELLANTS

INTRODUCTION

The prediction of motor structural damping characteristics by
analysis requires the dvnamic moduli (E',E") for a given propellant system.
Tests are currently underway to generate measured dynamic shear moduli
(G',G") using the Gottenberg torsional shear apparatus. In the absence of
available experimental measurements one is forced to rely on linear, visco-
elastic interconversion techniques to provide engineering values for early
analysis. This memorandum summarizes the dynamic tensile moduli (E',E")
over the range of frequencies (w) of interest using stress relaxation cdata
(1% strain) converted by (1) Pewer Law Modulus assumption, and (2) Fourier
transform integral conversion.

POWER LAW MODULUS CONVERSION

Most propellants can be represented by the power law model over
a wide range of time scale in the following form.

B(E) = Bu + By (1)
where Erx = long time equilibrium modulus
El,n = material constants

The value of Ex is estimated from a master stress relaxation curve at the
long times (say 104 to 106 seconds). The difference, E(t)-Es is plotted
against time, t, on log-log paper. The correct value of E, will lead to a
linear curve from which the values of E] (taken at t = 1) and n (slope of
line) may be detemmined. This procedure was followed and the constants
determined for VRA-7, VRX-2, VSF-3, and FKM propellants as shown in Table
A-I. One may check the fit by calculating distinct points on the master
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From: S. W. Beckwith -2 -

stress relaxation curve. In all cases the fit was within a few percent
except at very short times (less than 1075 sec). However, this is impor-
tant in that short times represent higher frequencies where the deviation,
after conversion may be important.

With the power law constants (Ex, Ej, and n) we may now cal-
culate the dynamic tensile moduli (E',E") using the following relation-
ships derived by linear, viscoelasticity assumptions,

E'(w) = Ex + Ej I'(1-n) w® cos %% )
E"(w) = Ej I'(l-n) w® sin —“21 (3)
=L
dqmMiT < 3 (%)
where I’ = gamma function
w = frequency {(Hz)
& mMIT = Phase angle in radians

This conversion works very well for the long time, low frequency range but
does not represent short times (high frequency) because of the divergent
E; t™" term. One typically needs the creep compliance power law for the
short time range,

D(t) = Dj + Ditn (5)
where b, = short time (glassy) compliance
D;,n = material constants

Using this set of models (equations 1 and 5), the low frequencies are
modeled by the modulus representation and the high frequencies by the

compliance representation,
D'(w) = Dy + Dj I'(l+n) w™™ cos %% (6)
D"(w) = D I'(l4n) w™® sin -"21 )

where the terms are as described earlier.

A-3

T TE———— NS - - e o S e i



From: S. W. Beckwith -3 -

STRESS RELAXATION MODULUS COVERSION - FOURIER TRANSFORMS

The seccnd approach was to use Hercules computer program 62501
which converts stress relaxation data to dynamic tensile moduli (E',E").

The dynamic moduli are expressed in terms of the relaxation
modulus in the feorm

E'(w) = w E(t) sin wt dt (8)
o

E"(w) = u)‘r E(t) cos @t dt ; 9)
(o]

from which the integrals are evaluated by numerical procedures. The repre-
sentation of E' usually is smooth while that for E" often shows some numer-

ical oscillations.

PROPELLANT RESULTS

The dynamic tensile moduli (E',E") for VRA-7, VRX-2, VSF-3,
and FKM propellants are shown in the attached figures. Table A-II gives
power law equations and the limit phase angle for the same propellants.
The following observations can be made from the data:

b Both VRA-7 and VRX-2, XLDB propellants, exhibit little visco-
elastic behavior as evidenced by the low value of n(.098 to
.116), whereas FKM (CMDB propellant) is intermediate (n = .215),
and VSF-3 (HTPB propellant) is high (n = .281).

2z Better agreement between the two conversion methods exists
when the time dependence is weak as shown by VRA-7 and VRX-2.

8 In all cases the conversion methods agree better in the low
frequency range as we noted they would earlier. Compliance
data would probably fit better at the high frequencies but
is not available.

4. The loss modulus, E", exhibits considerable numerical oscil-
lation at low frequencies and, in the case of VRA-7, diverges
about 103 cycles (Hz).

5. For analysis purposes, one should use the converted relaxa-
tion modulus curves (E') and a smooth curve through the cor-
responding loss modulus (E'") curve.

6. If one must work with dynamic shear moduli, then the dynamic
tensile moduli values must be divided by 3,

- AT T S T Sy




From: S. W. Beckwith -4 -

El
R 1
& 3 (10a)
11
G" = ET (10b)
SWB:pc
cc: J. M. Anderson K17
L, F. Myers K17
D. T. Wang K16
F. M, Norton K19
A-5
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Propellant
VRA-7
VRX~2
VSF-3

FKM

Propellant
VRA-7
VRX -2
VSF-3

FKM

TABLE A-I. POWER LAW COEFFICIENTS FOR

E-EQ-FElt-n

Iype Es (psi) _E} n

XLDB 300 419 .098
XLDB 300 280 116
HTPB 50 738 .281
CMDB 400 769 .215

TABLE A-II. POWER LAW COEFFICIENTS FOR

DYNAMIC MODULUS

E' E" dLmMIT
300 + 442 w-098 68.6 w-098 154
300 + 298 w-116 54.9 @-116 .182
50 + 847 w-281 400 w-281 441
400 + 858 w-215 301 w-215 .338
A-6
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Memo:

APPENDIX B

ANALYSTIS OF ROD-ORGAN PIPE STRUCTURAL
DAMPING MODEL

N. L. Peterson to J. M. Anderson, Hercules Incorporated,
Bacchus Works, Magna, Utah, 14 June 1977.
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Hercules Incorporated
Bacchus Works

Magna, Utah

14 June 1977

In Reply Refer to:
Misc/6/20-7482

TO: J. M. Anderson
FROM: N. L. Peterson

SUBJECT: ANALYSIS OF ROD-ORGANPIPE STRUCTURAL DAMPING MODEL

SUMMARY OF RESULTS AND CONCLUSIONS

A study was performed to referee differences between NASTRAN and
Hercules potential energy (PE) program calculations of eigenvalues for an
acoustically coupled viscoelastic rod and organpipe. Predicted values of
the damping parameter, o, agreed reasonably well for the few cases studied.
Previous structural damping predictions showing moderately high o are also
supported by the analytical solution, but there were complex differences
between the calculations of frequency shift with pressure.

For an undamped rod the analytical procedure predicts a 3.27%
frequency decrease from a base value of 730 Hertz at ambient to 707 Hertz
at 1500 psi; the PE predicts a 4.77 shift and NASTRAN predicts no shift
over the same range of pressure. All of the procedures predicted roughly
comparable increases of frequency from their undamped condition, for an
increase of the damping coefficient B from O to 0.5323. Ac 15 psi there is
general agreement that the shift with increasing f is small. At 1500 psi
the net analytical frequency shift due to damping and increased pressure is
0.7% above the ambient value. The net increase percentages for the PE and
NASTRAN procedures are respectively 0.2% and 3.3%. Thus, the PE prediction
again agrees better than NASTRAN with the analytical solution.

The better agreement between the analytical and PE solutions,than
with that of NASTRAN, may be fortuitous, considering all of the parameters
involved. Neither of the finite element programs directly enforce conti-
nuity of pressure at the RO interface, as the analytical method does, but
this condition may fall into place more effectively in the PE program due
to its simpler approximation procedures for 1-D problems.

NASTRAN calculations were performed with several solution rou-
tines and using both the FLUID and reformulated (for Poisson ratio nearly
0.5) CDUM elements. The insensitivity of frequency to a pressure increase

B-2




therefore appears to be related to the reformulated element, rather than the
method of solution.

The analytical procedure is computationally fast, so it was used
to perform a more detailed study of eigenvalue variation with RO physical
variables. A dimensional study of the results and the characteristic equa-
tion used to obtain them, ultimately led to a reduction of seven physical
variables to essentially three nondimensional variables and a semianalytical
solution for eigenvalues. This formulation displays coupling characteris-
tics that may be extended to a rationale of the more general structural
damping problem. The rationale permits grouping of problems, according to
values of the nondimensional parameters, as a simple or a complex problem.
Thus, solutions approach a constant value in the RO, when the uncoupled gas
organpipe frequency is 3 or 4 times that of the rod and their characteristic
impedances are not closely matched. This result is of practical importance
in motor design because it permits very simple preliminary estimates of
structural damping.

The parametric study showed that both damping and frequency may
increase or decrease by increasing p from its nominal value, according the
relative magnitude of the uncoupled frequencies of the rod and organpipe.
This result was predicted by Anderson in his structural damping paper (8th
JANNAF Combustion Meeting, CPIA Publication 220, November 1971).

The parametric study also showed that a large shift of the
operating frequency may occur as the result of certain combinations of the
physical variables. Maximum shift occurs when the uncoupled fundamental
frequencies, without damping, are slightly separated. Anderson's struc-
tural damping analysis did not disclose this fact, and incorrectly con-
cluded that damping suppresses frequency shift, because he only studied the
case where these uncoupled frequencies were identical. The analytical pro-
cedure predicts a minimum shift for this case.

The parametric and dimensional similarity studies have disclosed
and simplified a broad range of behavioral characteristics in structural
damping. Valuable guidelines for future structural damping studies are con-
tained in the results. The conclusions drawn are important and merit con-
firmation by independent procedures.

B-3
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NOMENCLATURE

g’ g’ g’ Rod-organpipe eigenvector subfunctions
s By
DO Disk=-organpipe
F Force per unit mass; eigenvalue vector
G Characteristic matrix
H Rod-organpipe eigenvector subfunction
)] Acoustic intensity
J Jacobian of characteristic matrix
K Complex wave number
L Rod or organpipe length
M Zener model modulus parameter
P Total acoustic wave pressure
R Acoustic wave number subfunction
RO Rod-organpipe
U Acoustic velocity amplitude
Y Phase velocity
X Oscillatory displacement amplitude; imaginary

part of complex wave number

b Real part of complex wave number
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NOMENCLATURE

e Base of Napieriam logarithms

£ Acoustic cycle frequency; force parameter

i Imaginary unit

j RO component index

k Spring stiffness, real wave number

« Hypothetical undamped wave number (w/C)

m Mass

n Mode number

p Pressure

r Ratio of characteristic impedances, dashpot

damping parameter

s Complex eigenvalue of discrete system
t Time
u Acoustic velocity
X distance
B-5

e e —— s’ S i




70 . S/ S N

= |

EEIE= JREE S - B i R TG Y T . e B T 9 T

NOMENCLATURE

Nondimensional frequency variable
Small variation
Acoustic characteristic subfunction

Acoustic decay parameter; acoustic transmission
deficient

Structural damping

Acoustic strain

Acoustic damping parameter

Real wave number

Acoustic displacement
3.14159¢< -

Density

Total structural wave stress
Eigenvalue perturbation function
Acoustic characteristic subfunction
Complex acoustic eigenvalue
Dynamic stress

Relaxation time

Acoustic phase angle

Acoustic radian frequency
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NOMENCLATURE

SUBSCRIPTS*

1 Acoustic variable in viscoelastic rod; first mode; first
component of acoustic characteristic matrix.

2 Acoustic variable in organ pipe gas

c Coupled condition

j Rod-organ pipe component variable index

o Steady state value; amplitude; current eigen value estimate

f Partial derivative with respect to frequency

n nth mode

N Undamped free oscillation

p Phase

€ Partial derivative with respect to time; displacement
parameter

X Partial derivative with respect to distance

o Partial derivative with respect to decay coefficient

1+ Incident wave
1- Reflected wave

2+ Transmitted wave

SUPERSCRIPTS
R Real
I Imaginary
Overhead dot implies total time derivative.

* Unsubscripted variable such as p, u, 0, €, ( are acoustic
perturbations of steady values.

e TN T R GATT WAl e o ” '
— — N e i . - e e A N




INTRODUCTION

Calculations of acoustic frequencies and loss parameters for
structural damping have been performed with the NASTRAN and potential
energy (PE) computer programs in support of the AFRPL structural damping
contract. Apparent differences between the results using two types of
NASTRAN elements and the PE elements occurred and could not be readily
resolved. One of the configurations studied was that of a viscoelastic rod
that is acoustically coupled with an organpipe. The coupled combination is
called the rod-organpipe (RO).

The objectives in this study were to develop a closed-form analytical
model of the RO acoustic behavior; apply it as a referee of the computer
programs; and then apply the model in a parametric study of structural
damping. The latter study was intended as a cost effective means to help
understand the dependence of acoustic coupling, decay, and frequency shift
on the geometry and material properties of the RO model.

The RO configuration was acoustically modeled by Prof. F.E.C. Culick
of California Institute of Technology with coupled analytical characteristic
equations. The model is one-dimensional (1-D) and uses the tensile modulus
to specify undamped sonic speed in the solid. This model was programmed for
calculation on the Bacchus computer.

The program initially failed to obtain a solution so a review of the
model and program was undertaken. An interpretive sign error was found and
the coupled characteristic equations were found to have large irregularities
close to their zeros. These irregularities caused confusion in the search
for the solutiomns.

The sign error was corrected and the characteristic equations were
algebraically transformed into more suitable forms. Several aspects of the
model were also modified to obtain a more direct representation of the
governing equations by the wave equation. A generalized Newton's method was
also formulated to solve the characteristic equations so that the model
could be programmed for machine search of solutions on an ITF terminal.

Many of the features of the coupled RO configuration are also con-
tained in its uncoupled components and in a simple wave guide with an
abrupt change of acoustic characteristics. Other feathers are analogous
to a simple discrete spring-mass-dashpot system. Analyses of several rele-
vant systems that help explain the RO behavior are outlined in the subappen-
dices, with some discussion pertinent to that behavior. However, the
primary intention is that the outlines serve as a basis for technical
argument and achievement of a common understanding among tiiose interested.

A preliminary review of the appendices might be helpful to those interested
in studying the report in detail.

COMPARISON OF FINITE ELEMENT AND ANALYTICAL RESULTS

A schematic diagram of the coupled RO configuration is shown in
Figure B-1. For simplicity in this study, damping was considered to be en-
tirely within the viscoelastic rod, but the analyses can easily be modified
to account for internal damping in the organpipe. The analytical model was
programmed on ITF and was used for comparison with the NASTRAN and PE
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program calculations of acoustic behavior. The finite element calculations
with 10, 500, and 1500 psig gas pressure in the organpipe are listed in
Table B-I. Results of the comparison of predicted acoustic damping and fre-
quency variations with pressure are, plotted in Figures B-2 and B-3.

Predictions of the acoustic decay parameter, o, by all of the programs
are in reasonable agreement with a small, but possibly important, difference
at the 1500 psi pressure condition. At this condition there is about 12 sec~l
spread in the finite element predictions for @, but the analytical prediction
is about 24 sec~! above their average. A reason for this difference has not
been conclusively determined, but it may be associated with fundamental in-
adequacy of displacement-type finite element procedures. This inadequacy will
be discussed after comparison of the frequency predictions of the several
procedures. Overall, the level of agreement shown in Figure B-2 is encouraging.

Predictions of resonant frequency shifts with pressure, shown in
Figure B-3 for the several computational procedures, are not in as good agree-
ment as those for damping. The temptation might exist to disregard differ-
ences between the several predictions because the shift is only about 10% of
the frequency or less, and its effect appears to be less important than
damping. However, as will be shown later in the parameter study, there are
situations where a small frequency shift causes a significant change in the
decay parameter.

In Figure B-3, the several predictions have a common frequency near zero
pressure, which is the uncoupled organpipe fundamental frequency. This is
because, at very low pressures, the more dense propellant acts as a hard wall
to the gas. As the pressure in the organpipe is increased, the character-
istic impedance (product of density and sound speed) of the gas becomes more
nearly equal to that of the rod. The result is greater acoustic coupling
between the organpipe and the rod. Coupling strength and frequency are also
influenced by the damping, through its effect on the sound speed (see Subappen-
dix B.E). As the coupling becomes greater, acoustic amplitudes in the rod
approach those in the organpipe and the two oscillate more like a single
homogeneous system. The result is that the frequency becomes that of a
simple uniform.system.

An example of frequency sensitivity to pressure, consider the hypo-
thetical experiment in which (1) damping in the rod is negligible, (2) sound
speeds in the rod and organpipe are the same, (3) gas density is negligible
in comparison to that in the rod and (4) the organpipe length is three-fourths
that of the rod. In this condition the organpipe will oscillate essentially
uncoupled at its findamental frequency. If the organ pipe is then isother-
mally pressurized to the samc density as the rod, the two will have nearly
identical acoustic properties and the combination will oscillate like a homo-
geneous unit. The fundamental frequency will be decreased to three-sevenths
of the previous uncoupled organpipe frequency. If the pressure is changed
gradually, there will be a gradual transition of frequency. This example is
based on simple acoustic theory for coupled oscillators. The effect may also
be recognized analytically by considering isothermal variations of p, in the
characteristic equation for an undamped system (see Equation 10 of Subappendix
B.C). The same holds for the damped system variations of |\ , as induced by
changes of py or B in Equations (39a, b) of Subappendix B.H.
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Coupling of the rod and organpipe acoustic fields is determined by two
conditions at the interface, as described in Subappendices B.C and B.H. These
two conditions are continuity of both displacement and pressure. They are
properly considered in the analytical models but the NASTRAN and PE proce-
dures are of the displacement type and directly consider only continuity of
displacement at the interface. The displacement condition provides coupling
between the two components, but it does not control the interface slopes of
displacement, as is inferred by continuity of pressure. Loose approxima-
tions of the pressure conditions presumed to be enforced by elemental force
balance in the finite element procedures, but lack of explicit control at
the interface leaves the accuracy of results somewhat dependent on chance.
This lack of complete simulation may be overcome by usce of a mixed (pressure
displacement) type element.

The foregoing discussion is helpful in diagnosing the frequency cal-
culations plotted in Figure B-3. Two types of calculations, for 8 = 0 and
B = .5323, are involved, and the predictions fall into reasonably close
groups. Both NASTRAN procedures predict zero shift for zero damping (B = 0).
In contrast to this, the analytical procedures predict a frequency drop with
increasing pressure for g = 0, as might be anticipated from the foregoing
discussion of coupling. The frequency drop is caused by the isothermal
changes of pressure, and thus of py. This frequency drop will help explain
the difference between the finite element and analytical calculations for
nonzero damping in the following paragraphs.

The NASTRAN predictions of frequency dependence on pressure with
damping (B = .5323) are again reasonably grouped, in both base frequency and
variation with pressure. The analytical and PE procedures again contradict
the NASTRAN group prediction. In this case they predict a considerably
smaller positive slope than NASTRAN. However, the difference between the
slopes of each of the procedures, as calculated with and without damping
are very nearly the hypothetical frequency shift in Figure B-3 which was
obtained by adding positive values of the analytical frequency drop for
B = 0 to the corresponding values for B = .5323. It hypothesizes the pre-
diction of frequency shift by the analytical procedure with damping,if it
was intensitive to the basic undamped coupling with frequency as NASTRAN is.
The agreement with the NASTRAN calculations is remarkably good, but it is
only used to demonstrate a consistency between calculations for the two
conditions. It is not a correction of the analytical procedure. Indeed,
the indications are that the NASTRAN calculations should be adjusted down-
ward by the analytical frequency drop for B = 0. Analytical, PE and
adjusted NASTRAN predictions for coupling with damping are shown in Figure
B-4. Reasonable agreement is achieved with this adjustment.

This comparison is made to appear more superficial, but most likely
not to be so, by considering the effect of refining the NASTRAN grid. A
calculation with B = .5323 at 1500 psi with roughly four times finer mesh
reduced the predicted frequency from 757 Herz to 740 Hertz. The difference
between this and the analytical prediction is only .7%, but the grid was
much finer than could be afforded for practical motor stability studies.
Furthermore without damping, the refined mesh gave identical results to the
coarser mesh calculation. These results are also shown in Figure B-1. Thus,
the grid refinement calculation with damping appears to give a fortuitously
good result by partly eliminating a frequency shift that is real.
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The temptation again might be to state a general rule, from the
tendency toward cancellation of the two frequency coupling effects in the
RO configuration, as predicted by the analytical procedure. The para-
metric study shows this would be reckless even for the RO, let alone
rocket motor configurations. The conclusions that should be drawn from
the comparison of results are (1) there is encouraging agreement between
all the procedures on the important prediction of decay exponent, (2) a
strong likelihood of erroneous frequency coupling calculations and their
sources in the NASTRAN procedures has been detected by the analytical
procedure, and (3) there is real value in the use of analytical test
models to trouble shoot and validate finite element procedures. Reli-
ability of the analytical test procedure is dependent on the careful
attention to detail. Further attention to such detail in the present
procedure may be needed to obtain a completely satisfactory check.

After consideration of NASTRAN, PE, and analytical solution dif-
ferences the decision was made to further review the 1-D model and to
perform a parametric study of its independent variables. One possibility
considered was that the model might be better able to resolve problems if
it were expanded to incorporate two-dimensional (2-D) strain using a
Bessel formulation. Bruce Hopkins expanded the calculation to a first
order in the Bessel function and found that use of the modified sound speed
(based on tensile modulus) in the present 1-D model was the correct proce-
dure. Analysis of higher order terms for cylindrical symmetry has not been
performed.

The remainder of this report contains a review of components and
concepts that are involved in the RO model and the results of a parametric
study of the sensitivity of its eigenvalues to variations of geometric and
physical property characteristics.

CONCEPTS AND COMPONENTS OF THE ROD-ORGANPIPE

The factors that influence behavior of a 1-D acoustic model are its
length and its distribution of sound speed, density and damping behavior.
Abrupt changes in the material properties, such as that at the RO interface,
and the relative acoustic periods of these components influence acoustic
transmission from one component to another through the specific acoustic
impedances at the interface. The relative lengths and speeds of sound
influence the transmission by their effects on wave frequency and phase
relations at the interface.

A preliminary review of the rod and the organpipe, as individual un-
coupled systems, helps to more clearly define their interaction in the coupled
RO configuration. A description of the uncoupled organpipe is given in
Subappendix B.A. As in all of the configurations analysis in this report, both
the stress and strain fields are assumed to be 1-D. The damping is considered
negligible and, since the end is uncoupled from the rod, no reactive response is
assumed. For this reason the eigenvalues are real quantities which are the fre-
quencies fn = nC,/2L. This analysis is briefly extended to that for an undamped
rod with fixed-free boundary conditions, which are closely related to the
coupled RO problem. The frequencies obtained for therod are fn = nCo/4L.

The analysis in Subappendix B.A was for a closed-closed organpipe. The
double closure is more appropriate for the consideration of coupling with
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the rod where the changes of density and speed of sound cause a reasonably
large increase in the characteristic impedance to a wave traveling toward
the rod. The exponential, ei(kx-wt) is used to represent the spatial and
temporal distributions of the wave, assuming the real part as representing
the physical phenomena. This approach is based on convenience in mathe-
matical operations and interpretation, and is justified on the basis that
the acoustic equations are both real and linear. These conditions permit
the modeling to be performed with the complex operator to obtain a repre-
sentation of the physical solution as the real part of the mathematical
solution. This validity also extends to the conditions, to be encountered
later, where the terms for k and w are also complex.

The effect of a sudden change of characteristic impedance is derived
in Subappendix B.B. That analysis shows that the transmission of a simple undi-
rectional wave traveling from one medium to another can be expressed in
terms of the ratio of the characteristic impedances. This ratio is the only
characteristic needed to account for the influence of material properties on
wave transmission through an interface of two undampened materials, if no

reflection other than at the interface occurs. This fact is very important to
analysis of the RO, because its wave system is formed by the superposition of
wmidirectional waves that cross the interface.

However, hard walls at the ends of the RO configuration cause
reflected waves, they therefore modify the impedance at the interface. This
modification is accounted for by use of a complex factor that multiplies the
characteristic impedance and is determined by the relative amplitudes and
phase angles of the waves reflected from the fixed ends of the RO. Impedance
at the interface is therefore influenced by the relative acoustic frequencies
and damping which might occur in either end. The acoustic frequencies, in

turn, depend on the geometric lengths and sound velocities. As will be
shown later, the sound velocities are modified by damping.

No special analysis of free acoustic oscillation in an undamped rod
was performed due to its similarity to the organpipe. But special consi-
deration should be given to the assumption that both the stress and strain
fields in the rod are 1-D. This infers that the oscillations are only in di-
latation. In the analyses of this report, the assumption was made that use
of the shear modulus (rather than that for dilatation) in the 1-D strain
model is an acceptable approximation of 2-D laterally unconstrained rod
oscillations in a fundamentally longitudinal mode. As mentioned previously
this was found to be a reasonable first approximation for the 2-D stress
field.

An analysis of an undamped RO configuration is developed in Subanpendix B.C.
The characteristic equation, reproduced here as

2Ly
ean(™f 5 + &S
gy vz

C2

tan(mr £

implicitly but forcefully shows the importance of both the characteristic
impedance ratio, p1Cy/p2C2, and the relative magnitudes of the uncoupled
acoustic frequencies of the rod and the organpipe, C1/2L) and C2/2L2, in
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determining the characteristic frequencies. Care must be exercised in using
the impedance ratio as a dimensionless similarity parameter because the
sound speeds, which it contains as a ratio factor, appear otherwise in the
trigonometric functions. Even though coupling effects involve the entire
ratio, independent variations of the sound speed ratio should be considered
separately.

The units of time and distance can be separately chosen so that Cj =
2L]1 in magnitude. With this transformation the characteristic equation
would demonstrate another important similarity parameter (CpLj)/(CjL2).
Again, this parameter is not exact, because the acoustic velocities are
involved differently in the impedance ratio. Thus, the coupled, but
undamped RO configuration pj/pp, L1/Ly and C;/C appear as exact dimension-
less similarity parameters while (p1C1)/(ppC2) and (CpL;)/(CyL2) appear as
important, but coupled parameters. These facts will be realized in analysing
behavior of the coupled RO in the parameter study.

The influence of damping (caused by internal friction or viscosity) on
the wave amplitude and frequency is not as intuitively nor analytically simple
as that for a discrete spring-mass~dashpot system, but similarities in the
behavior of the two warrant preliminary consideration of the latter to gain
insight. Analyses of two common (Voigt and Zener) systems are presented in
Subappendix B.D.

The Voigt model eigenvalue, Q =-g + % = -Cwn + wp Jl-gz clearly shows
the inflgence of damping on both the frequency and amplitude of free oscilla-
tions. hifts of the damped eigenvalue frequency and the frequency response
peak are both downward from the undamped condition as shown in Figure B.D-1. It
is important to recognize that the displacement frequency response peak is
shifted down from the undamped resonance frequency by approximately twice the
shift of eigenvalue frequency obtained for the free damped oscillations but
the velocity response peak is not shifted by damping.

A discrete model cannot satisfy a comprehensive analysis of the con-
tinuous RO configuration, but the latter can (at least theoretically) be
posed in a discrete modal form in which the anclogies described in Subappendix
B.D can be made exact. The Voigt model is unimodal so it cannot predict direc—
tion of frequency shift with damping in coupled systems, where the shifts can
be in either direction according to phase relations between transmitted and
reflected waves at the interface. Pursuit of the exact analogies between
discrete and continuous models is beyond the scope here, but the results of
Appendix D are qualitatively important for understanding damping effects and
their calculation by eigervalue and frequency response methods.

The simplest form of damped continuous system is the 1-D damped rod.
An analysis of this system is presented in Subappendix B.E to demonstrate damp
ing analysis terms in the uncoupled components of the damped RO configura-
tion. This continuous system analog to the complex compliance, discussed in
Subappendix B.D, is applied here as the only change to the governing equations
used for Subappendix B.A. The compliance analog enters as a time-rate-dependent
part of the equation of state so that it forms a dynamic state equation.
This form of the dynamic state equation is similar in character to the Voigt
model in Subappendix B.D. In comparison with the Zener model, it has the weak-
ness of not characterizing the pressure relaxation time for a step change of
density. Neither the magnitude of the pressure relaxation term nor its
influence on the analysis are know. Time was not available to determine
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either in this analysis, however, the difference might be crucial in ob-
taining satisfactory correlation of test and analysis data.

In addition to the complex frequency, as used in Subappéndix B.D for the
damped discrete system, the damped rod analysis develops the concept of the
complex wave number, which defines both the wavelength and its spatial
amplitude decrement. In the sense of this wave number being the ratio of
angular frequency to the sound velocity in the case of an undamped system,
some analysts define a complex wave velocity for the damped system and
develop their analysis using it. This is not essential to the development
since the temporal and spatial aspects of the damped wave are completely
defined by the complex frequency and wave number.

The complex characteristic equation is also introduced in Equation 15 of
Subappendix B.E. Hyperbolic terms, that involve the spatial wave amplitude, combine
with the trigonometric terms, that involve the wavelength. The real parts of the
wave equation and boundary conditions require both the real and imaginary parts of
the characteristic equation to be satisfied. It is therefore separated into two
coupled real equations to be sinultaneously solved for the components, f and oy of
the complex eigenvalue.

Analysis of frequency response of the damped rod is helpful for under-
standing problems involved in utilizing test data. The frequency response
for a damped rod is developed in sybappendix B.F as a basis for understanding
these problems. This development is similar to that for eigenvalues of free
oscillations. The governing equations are identical, but the oscillations
are assumed to have a steady value so that a real frequency is assumed. The
other essential difference in assumptions is that some part of the body (the
rod end in Subappendix B.F) is assumed to have a constant oscillatory amplitude
and frequenély.

Although there is no temporal damping, the time-rate dependence in
the dynamic state equation interacts with the real frequency to create a
complex wave number and, therefore, spatial damping. The temporal damping
coefficient may be obtained by inference either from the resonant frequency
and half-power bandwidth or the loss tangent in the ways used for discrete
system analyses, but any such estimates should be based on careful analysis.

All of the analyses of this report, including that for the RO con-
figuration, were developed using acoustic terminology. However, in consi-
deration of the direct applicability to possible structural dynamic testing
by conventional engineering methods, the frequency response of the damped
rod was redeveloped in Subappendix B.G, using structural nomenclature and the
test data convention for the structural damping coefficient B, loosely
called the loss tangent.

The relation between the acoustical and structural damping coeffici-
ents was determined by comparison of acoustic and structural damping de-
velopments in Subappendices B.F and B.G, to be

B =-wg/C 2 el

where { is the acoustic damping coefficient and C 1is the sound velocity in
the damped material, as approximately determined from the static modulus.
Some questions relating to sign conventions in test and analysis have not
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been conclusively resolved. Although experimental tests would show that

both ¢ and B vary with oscillation frequency (and amplitude), the analyses

of this report assume that B is a constant (0.5 for the parametric study

and .5323 for the PE and NASTRAN programs) for all test parameter variations
but that of itself. The close relations between analyses of free and damped
oscillations in the continuum model and those in the Voigt model should moti-
vate careful consideration of the differences between frequency response and
free oscillation analyses, as they relate to experimental data and acoustic
damping predictions.

The review of the preceding paragraphs and the developments in Subappen-
dices B.A through B.G display the components, and concepts involved in the analysis
of the damped RO configuration. An analysis of this configuration is provided
in Subappendix B.H. The complications of its behavior, due to coupling of compon-
ents and due to damping, are interrelated but, to a reasonable approximation,
may be considered separately. Some analysis of the RO behavior for variations
of its geometry and material characteristics are discussed later in the para-
metric study.

Subappendix B.H also includes the development and application of a gener-
alized Newton's method to obtain the simultaneous solucion of the two char-
acteristic equations as functions of the frequency and temporal damping para-
meters. This procedure is applied, in the ITF program, to iteratively search
the zeros of the eigenfunctions. Accuracy of the solution depends on the
precision available in the ITF system and on the stability of the eigenvalues
f and o through repeated iterations. If, through an iteration, the respec-
tive changes df and do are made and

1S5 + €< 0002

the solution is accepted. The computer program is listed and discussed in
Subappendix B.I.

The ITF-operated analytical procedure is a very cost effective and
instructive tool. Its validity is sufficient that it can provide valuable
insight and data to complement the finite element study and help guide the
remaining effort in the stuctural damping program. The parameter study in
the following paragraphs is intended to define the sensitivities of the RO
to the several system parameters and to develop the similarity relations by
which analysis of the modes can be reduced to simplest form.

PARAMETRIC STUDY OF ROD-ORGANPIPE BEHAVIOR

The dependent variables of interest in defining the RO acoustic be-
havior are its eigenvalues and eigenfunctions. The eigenfunctions are helpful
in understanding the distribution and flow of acoustic energy, but they will
be disregarded in this analysis to focus attention on eigenvalues. This will
permit summarization of the temporal behavior for a large range of parametric
variation in a few graphs of frequency, f., and amplitude decay rate, oc-

The independent variables of interest are the lengths, L; and Lj of
the rod and organpipe respectively, and the material properties associated
with wave travel and damping as shown in Figure B-1. 1In the analytical model
those properties are characterized by the sonic speeds, C] and C; the steady-
state densities, P; and Py, of the solid and gas respectively, and the tem-
poral damping coefficient, B, of the solid.
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The characteristic equations define the eigenvalues implicity so a
preliminary study of the variations for the acoustic parameters (L;, Ly, Cy,
C2, P1, and 92) was performed to find the trends that would infer functional
similarities as discussed earlier. Also, since the densities enter the
analysis only in the form of a ratic, they are combined in that form as a
single parameter. Base values of the parameters are shown in the list below.

Base Values of the RO Configuration Parameters
Parameter Symbol Value

Density Ratio P1/02 10

Rod Length Li 10 in.

Pipe Length L2 10 in.

Rod Sound Speed C1 6000 IPS

Pipe Sound Speed C2 12000 IPS

Damping Parameter B .5

Results of these calculations are summarized in Figures B.5 through B.12.
All results were plotted in dimensional form but the frequency is plotted as
a shift, Af, of the coupled frequency, f. from the uncoupled organpipe fre-
quency, fp = C2/(2% Lp); thus, Af, = f. - fy. This permits reducing the
scale-range from that required to span the wide ranges of f_. created by
varying C2 and Ly and focusing attention on deviations from f2 for their
significance. The data for variations of C; and Lj were plotted similarly for
uniformity.

The lengths and velocities were all varied much more than needed for any
direct comparison, and more than is physically reasonable for the sonic velocit.es.
This was done to obtain a vivid picture of the functional characteristics of the
variations. Thus, the hyperbolic nature of the average variations of @, with res-
pect to Ly aund C; in Figures B.6 and B.7 plus similar quadratic variation with res-
pect to C2 in Figure B.8, were readily detected. A roughly proportional variation of
all the data with respect to the density ratio p2/p1 is also apparent. This depend-
ency will be considered in greater detail in subsequent paragraphs and in Figure B-20.
No average variation of @, with respect to Lj is apparent. This appears to contra-
dict the idea that acoustic decay by structrual damping increases with the volume of
damping material.

The terms that are involved in the average variations are those re-
lated to the characteristic impedances of the gas and solid and to the
uncoupled organpipe mode frequency. These dependencies were antic: pated
and used to reduce the variations to a simpler form.

The variations of Af; with respect to these parameters (Ly,Cy, C2 and
P1/P2) involve characteristics similar to those for a, though not as distinct.
This similarity might be anticipated on the premise that, in the construction
of the wave number in the wave equation, the damping coefficient enters the

B-16

e e e— e — ey T —— o




L ——— e o = e

real and imaginary parts as an additive and multicative factor respectively.
The entire complex frequency, wc - i@, would therefore be affected in the
same manner. Thus, at this level of comparison, the correlations for Af.
appear to be similar to those for o.. The premise that the variations of
frequency shift and decay exponent could be reduced to at least a partial
analytical description is obtained from considering the characteristic
equations in Subappendices B.C and B.H. This is supported by the data pre-
sented in Figure B-5 through B-12.

Algebraic trends of the RO frequency shift, Afc’ and decay exponent
@c, variations with C;, Cp, p1/p2, and Ly were previously described. These
variations and the functional form of the characteristic equations, were used
to reduce a functional approximation to the trends given by &, = (pzcz/plcl)
(C2/2Lp). The characteristic impedance ratio and organpipe frequency being
considered are contained in this approximation to Afc and o.. They respectively
represent the influence of material properties on coupling effectiveness, and
the real eigenvalue which supports its own modification.

Lengths and velocities were combined into a single '"mode-coupling"
variable T¢ = (Cp*Lj)/(Cy*L2), on the assumption that the uncoupled mode
characteristics form a single similarity group upon which the variations
depend. These variations of Af, and o, with [, are transcendental and may
not be easily resolved in fuctional form. They were left in empirical form
here, but may be further resolved by a more elaborate modal analysis.

The damping coefficient, B, is already a dimensionless parameter. It
was not recognized as belonging to the previously mentioned similarity groups.
These are closely related in the immediately visible variation trends and the
forms of the characteristic equations. Therefore B was left to be considered

separately after a preliminary reduction of the data with the variables
mentioned above.

The ITF procedure was modified to calculate the values of o /3. and
Afc/%c as functions of I'c. Dimensional variables are simultaneously involved
in ¢, and I'c and, because these dimensionless parameters were only test vari-
ables, calculations were performed varying [ by means of the individual di-
mensional variables as was done in the initial parameter study. Results of
these calculations are plotted in Figures B-11 through B-14, and are arranged in
identical order with respect to the individual dimensional variations.

A gross analytical reduction and simplification of the relations
between the RO system variables is evident in the similarity of the plotted
variations. Relevant gcale magnitudes of both independent and dependent
variables are reduced to the same order. A global picture of the variations
is easily perceived as products of (1) the algebraic function, ., and (2) the
globally similar plots of ac/éc and Afc/QC with 'c. This similarity is strong
between variations of any of the components of ', and is essentially exact
between variations of either of the lengths or sound speeds. A totally closed
form solution was not obtained, but the variations are in suitable form to
obtain a simplified image of the total results and to guide further investiga-
tions.
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Each of the several plots for different density ratios in Figures B-11
thvough B-14 are quite similar in form. Variations between the forms are either
small or uniform. A more detailed perspective of these variations was
obtained by calculating the reduced frequency and decay parameters as
functions of the density ratio, pl/pz, for several values of I'.. These
calculations are plotted in Figures B-15 and B-16.

The plots show several distinct regions of variation with respect to
p1/p2, and I'c. At very low values of these parameters the frequency shift
parameter, Afc/éc, and the decay parameter, wc/3c, vary oppositely with the
frequency variable, [c. The approximately linear variations of these
parameters with P}/p2 as shown in Figures B-15 and B-16, and with I, as shown
in Figures B-11 - B-14, are reasonably simple to predict. However, this may
NOT D€ relevant to structural damping because it corresponds to very high
pressures (or low temperatures) and to extremely small values of the length
ratio, L1/Lj.

As pl/pz and ['¢ are increased, the decay and frequency shift varia-
tions both pass through transition regions for each of these variables.
Thus, as ', is increased, the variations have strong oscillations as the
uncoupled frequencies, C2/(2 Lp) and C1/(4 Ly) pass through resonance and
anti-resonance conditions. As [ becomes larger than 2, the significance
of this resonance is diminished by the spatial decay of the reflected wave
in the solid so the variation with respect to this variable becomes quite
small. A rough check has indicated a reasonable likelihood of this situ-
ation existing in practical motor designs.

As the density ratio, P1/P2 is increased in Figures B-15 and B-16, there
is a transition in the decay parameter variation, from the linear region to
an approximately constant region. The likely region of relevance to tests
and motor design is above p1/Pp = 10. The variation of o /¢, and Af /¢
above this value is essentially negligible.

If the foregoing conditions do exist in motcr structural damping, the
consequence on its analysis may be extremely important, because it might re-
duce the evaluation of structural damping to that of determining a parameter
quite similar to 3.. This task would be almost trivial when compared to a
complete NASTRAN analysis. If the variations with ['. are small but signifi-
cant, greater reliability in the calculations could be achieved by using
NASTRAN. An intermediate possibility is that for some acoustic modes and
motor burn conditions, a simplified analysis could be used while others would
require analysis involving the uncoupled modes, to obtain the coupled behavior.

As stated earlier, analysis of the influence of the damping coeffi-
cent, B, was deferred until simplification of the analysis could be achieved
with the other similarity variables. Variations of the reduced decay and
frequency parameters with g were then performed for several values ['¢c and
P1/P2. Representzcive plots of these calculations are shown in Figures B-17

and B-18.

For very small values of 8 (not shown in the plots), the value of
oc/®. varies linearly and nearly equal to B. The approximate equality indi-
cates an essential closure of the relationship o, = B®. for small B. How-
ever, the region of practical interest is near § = 0.5 and, for this value,
nonlinearities strongly influence the variation. At very high values of B,
structural damping dynamically hardens the viscoelastic solid so much that
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it behaves more like a solid terminal to the organpipe. This 'hardening'
is in addition to that of the characteristic impedance, 91/92, in §.. It
therefore, strongly reduces o¢/®. from the linear variation for large B.

Fortuitous matching of the acoustic wave in the rod with the un-
coupled organpipe fundamental mode exists for § = 0 and ['c = 2, 4, and 6.
The frequency shift therefore, approaches zero with B because the latter
acts to mismatch the transmitted and reflected waves at the RO interface.
At T'c = .25, the rod and organpipe are not well matched at 8 = 0, but the
match is improved by increasing B. Further study would be required to
obtain a strong rationale regarding the influence of B on frequency shift
and to assure consistency between experimental methods and data, and
damping predictions based upon them.

ROD-ORGANPIPE ADVANTAGES AND DISADVANTAGES

The RO configuration has proven to be a valuable analytical tool for
evaluating finite element results in the 1-D problem, and for disclosing
problems and simplifications of structural damping analysis. Much more
insight may yet be obtained by simple calculations. For example solution
stability and sensitivity to error can be assessed by calculating partial
deriatives of the characteristic functions with respect to uncertain para-
meters and finite element formulation features. Other applications are to
determine the differences that may exist between behavior of Voigt, Maxwell,
and Zener models, and between 1-D and 2-D (axisymmetric) models.

The RO is an effective model for simple theoretical exploration on
the computer, but its simplicity is achieved by disregarding several prac-
tical details in the analytical model. The rod is constrained to axial
motion and the interface is assumed to be sealed around the circumference
by a perfectly compliant and frictionless seal. Acoustic waves in the rod
could be more accurately simulated by accounting for axisymmetric radial
expansion with a Bessel formulation, but transverse oscillations would also
be parametrically excited in the rod by longitudinal driving at the RO
interface.

The rod cannot be appropriately constrained from these modes without
impeding the acoustic wave. Nonlinear Floquet stability theory, using the
Mathieu-Hill equation, is required for analysis of the parametrically ex-
cited transverse waves. New theoretical work would be required to analyze
these waves, but the problem would likely be intractible.

Another practical problem of the present RO configuration is the
acoustic seal needed around the circumference of the interface. Acoustic
losses at the seal would need to be negligible, but its friction and com-
pliance would also need to be extremely small and accountable in any experi-
mental apparatus. Any circumferential nonuniformity would seed the para-
metrically excited transverse oscillations.

Still another drawback of the RO is its lack of effectiveness in
coupling organpipe oscillations with bending and shear strain in the vis-
coelastic materials. Analytical representation is easy to obtain, using the
reasonably high accuracy of a computer, even though the acoustical impedance
is high. Experimental work is much less accurate and, therefore, the need
for maximum matching of the rod and organpipe impedances is acute.
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CONCLUSIONS

Comparison of the rod-organpipe (RO) analytical model with results from
the NASTRAN and PE programs has demonstrated reasonable agreement in the
acoustic decay parameter and disagreements in the frequency shift. The likeli-
hood was shown that the disagreements are caused by a weakness of the reformu-
lated CDUM element used in NASTRAN. Further study of this problem should be
performed to determine whether a mixed element , that provides for continuity
of both pressure and displacement for abrupt material property changes, would
calculate the correct frequency shift. Such an element may be valuable for
other problems in structural analysis.

A comprehensive parametric study of acoustic decay and frequency shift
in the RO configuration was performed, and the results were reduced to a
simplified form by analysis of similarity. 1In the simplified analysis, three
nondimensional indepencdent variables essentially replace seven dimensional
variables needed in the unreduced form. The results provide considerable
insight for the general problem of structural damping analysis. They also
disclosed the possibility of achieving an important reduction in the ana-
lysis required for structural damping with simple, but powerful, modal
analysis methods.

The RO analytical procedure has proved to be a valuable tool in
understanding the problem of structural damping and the finite element pro-
cedures used to analyze it. Extensions in the use of the model that are
recommended are separate modifications to investigate (1) the significance
of applying the more comprehensive Zener model for viscoelastic compliance,
(2) eigenvalue solution stability and sensitivity to error, and (3) the
significance of 2-D effects.

The subappendices of this report provide a heuristic development of
many concepts and problems in structural damping analysis and uf the modified
Culick analysis of the RO configuration. They also provide a rational basis
for critical review of problems of the structural damping program with AFRPL.
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SUBAPPEND1IX B.A

EIGENVALUES OF CLOSED ORGANPIPE

Acoustic coupling of the rod with the organpipe modes is essentially

a perturbation of the gas cavity oscillations, determined with the assump-

tion of a hard wall at the propellant surface. The analyses of this report

are based on modification of the fundamental mode of a closed-closed (C-C)

organpipe by a viscoelastic rod coupled in tandem. This Subappendix outlines

the derivation of the C-C organpipe eigenvalue for free oscillations as

follows:

r : .

G Co

Figure B.A-1. Closed-Closed Organpipe Schematic

Continuity = e U (1)

Isentropic State P = Cz (’ (2)

Momentum (’o U = -~ Px (3)

et pupru € @

(1), (2) & (&) Ft-.-. 6 c"'u,x (5)

(4)¢ Ueg =—Lodu (6)

-3y & (5), ¢t Pax = P M

() & (1) P t k‘-PQO wheee (9% (8)
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()
B.C's. a(o)(?a(l.) =0 (9)

-ikx

Bidirectional X
Wave P= P e + pP-€ (10)
(3) & (6) w= -t Px /(€ ) (11)
L kx -ikx
(10) & (11) o= (’_:E- <P* et~ p.e ) (12)

(9-a) & (12) P, ._._.(‘";)_ =P é p ® -P<eo'.hx+ e-th)

(13)

: -tkl
(9-b) & (13) e‘“’- e 20 or sin(RLY=0 or Rz 'DE (14)
[ O n nc
(8-b) & (14) w, = J k;’ m‘:— oY pﬂ =21 = z L (15)
“B.€si for (O} (Y
fixed free w(o)=o P(L) = 0 (16)
(13) & (16-b) Cos(k_\l_):o of k“‘:'. (E.,%E)'E (17)
- (@n-1)c
(8-b) & (17) o, = Ckpy = ('-"-n.'-;‘%_m ov -f,, = (TC- n=1,2,3;c¢ (18)
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SUBAPPENDIX B.B

SIMPLE WAVE TRANSMISSION AND REFLECTION AT ABRUPT
CHANGE OF CHARACTERISTIC IMPEDANCE

Changes of density or sound speed, along the path of a wave, split
the wave into transmitted and reflected parts. The functional nature of
this behavior is important to coupling between the components of the rod-
organpipe. The relationship for the ratio of transmitted and reflected

amplitudes and intensities is derived here for nondissipative materials.

Consider the pressure amplitudes at the interface of materials
designated with subscripts 1 and 2. The wave transmitted into material 2

is assumed to continue without reflection as shown in Figure B.B-1.

6, (2,Ca

Figure B.B-1. Waveguide with Abrupt Change of
Characteristic Impedance

The outline of the derivation is as follows:

(10),(11)&(12) (@ d)

from App. A 'P' =R++P- PzQ PL*.‘.P- ‘Pz_-(:—l o) F). = E_

02 #ECR) Ul ERAR)

(1)

Eliminate Py & ( _
Py and Solve E - ‘g'r‘ %1:(26) E':" Wk“e \”-%'CE} (2)
'+ Y4\ t+ (B}

Definition of G_\

Intensity &“ = ﬁ,', u‘H’ 4“ &" uu. 1= W= 3




Evaluate u in terms

2 (Y, @2 "
t?\ic?t.& average over CQ“_,@ -R* /(’LGQD Ju_ P—;:-/(?-fzc’) &l" P\‘/(zﬁcl) (4)

Transmission

(a) ® 4
fay o _Ar
Coefficient Xt= _4_2_1. ) g

e E (ren®

(5)
)
eflection & & (b) 2-(b<
: Cfﬁet’ﬁciont °< oy
It is important to recognize that
0]
o) T ¢ a,m¥um
(6)
© P P-| @ _ B
and T* = .P'Jl Lm‘\' ‘P:+ \ PH’

> L

i : i action at the
These relations help understand a peaking of the coupling

condition r = —-= = 1. Equations (6-c&d) are plotted in Figure B.B-2.
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SUBAPPENDIX B.C

CHARACTERISTIC EQUATION OF UNDAMPED ROD-ORGANPIPE

The undamped RO configuration is the limiting case for small damping
coefficient 8. Its characteristic function is therefore a check
for the damped RO at the condition B = 0. It also provides a simpler

example to perceive the handling of those features not related to damping.

The analysis here utilizes that of the organpipe in Subappendix B.A by
assigning subscripts, 1 and 2, to the terms of Equations (A-10, 12), corres-
ponding respectively to the rod and organpipe. The analyses are then

coupled as follows:

L-'__——"

L

€y Ci

lt

P
ne

€ryCe

Figure B.C-1. Undamped Rod-Organpipe Schematic

osx < L,

L, €x < L,fg
a ' Ry -1k (b i kaX -1kaX (10)
P|(= Pw'e‘hx"' P!-e‘ 3 PPy © + Pa-€
& ] - ik -1 b
wE el Pud® e ™ w L[ prd*p, e a2
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@ (b)
{ W)= 0 P=p. =T,

e () 20 b & ) o 2k ltly)
_oi).{_"-_LL_ L ¢xE Li+l,
- > i -.' ~2(L

(12),(13)&(14) u‘@?%"—(e'“‘"e"hx) ) (b)P{ iRaX -.k,_[,( z(l_.u,g]l

(i ] b..‘L,j e" ko (ZLHL)
£ iknh +e-ll hn L|

Interface
Conditions

kL, ikaGzlarly)
u( B, (L) PO g efh-e

(15)

(16 )

{17)

(18)
Po @G eRbi_ ikt
ibl_cibl @ oo gkttt ikl @ o0 ikl ikl
olkliy o-iRL By TRzt iRl T Tl e'EiLHe T2 La
t&n h|Ll + §|C! - o (2())
tav\ L-’L er_ e‘LC‘L
ton (1252 ) o
4 elcl =0 where ’cn = ‘i“# (21)
tan (C—Uf"-
a/2la
are the coupled, but undamped, RO natural frequencies.
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SUBAPPENDLX 6. D

ELGENVALUES AND FREQUENCY RESPONSE

OF DISCRETE DAMPED OSCLLLATIONS

The Voigt model shown in Figure B.D-1 is the simplest discrete model
that can be used as an analog for comparison with damped continuous systems.

Analysis of its cigenvalues and frequency response is as follows:

}—>x

o
J
A \%\\\\

Figure B.D-1 Voigt Oscillator Schematic

2]
@ (k) wm.

Moment um M* } Y‘* ¥ kx :? or .x. fz—fmn.x +w:; x= F where s@'zﬁ;’ (1)
N

@f

FE,
Char. Eqn. F"—'O # X ~ e‘t S0 (Sz""Z.S OJN < +w3’)x =0 (2)
Ligenvaluc S = —X+ ;w - -—-s QN + i CONV I‘z‘t (3)
Freg. Shift %’;‘ w&‘;’”’ﬁgz-l ’3-‘-‘,_‘91 (4)

s [ VSN

Bl ®. it @) E
briven Freq. F ___Fo e‘ 80, using Eqn (l—h), X":.‘ (@ﬁ&)“)'ﬁlifﬂﬂw (5)

Resp. Eqn.

IX\Mx occurs at the frequency where ,(&}-d)‘) + i ¢S¢>,, 0)' or (u):"”")-"f"sz(ﬂ;wt (6)

is at a maximum., Diffcrcntiating(b) with respect to and equating the results
EA
Lo zero obtains the amplitude resonance at QL) = (-L)Nq -2 3 (7)
~ S
Lo - ,
Freqg. Shift W W ~ S 3 B=47 (8)

e T il IR, ct——n e S




Consideration of the velocity resonance frequency condition is

sometimes impertant because measurements or calculations may be velocity

related. The velocity is given by X = iw X (9)
and the frequency for li‘n“ is the same as that for “X“;"“

*
so the velocity resonance is at A{IXI w& =0 (10)

dfy®w - d oot T et 1 2 s
e SRS = 15 (@u-oR)T + (2 S0pe] "‘d“r(w.:-w':*»(zswﬁf‘ ;
Thus the velocity resonance is at u)swt).

Three frequencies have been found which characterize the Voigt model (12)

They are schematically represented in Figure B.D-2. Distinct frequency peak

(A
% |
Q
S |RSRAsE ; l
h, | -
3
% |
£ gl.oclw &
<< PONSE
3 3!
1
o ali
PeAK DA MEMSNTRES pONSE /
FREE OscaunTion E16ENVALUE
PeAx VeLoary ResPoNsSE
*(00°
w
~4
¥
2
<
g i A YY) 2wWpn
T
(\%
~1p0®

Figure B.D-2. Voigt Modei Frequency-Peak Characteristics

characteristics also exist in continuous systems, however, direction and magni-
tude are not simply related with those of the discrete model if a coupled system

is involved. The analogies for such cases are more complicated.

el s T G 6 T T T




The Zener, or standard linear compliance, model (see Figure B.D-3) is
a more exact analog of damped continuous material. It is similar to the
Voigt model but has a linear spring in series with the dashpot. This allows
the model to account for pressure relaxation that is observed after sudden
compression. The Zener model can best be compared directly with the con-
tinuous system by considering only the complex compliance as relates between

the two systems. The analysis of the compliance is as follows:

P g
| Y. SN

A NSNS

Figure B.D-3. Zener Compliance Model Schematic

Kex + K (x=X,) =-~(—7 (13)

Force Balance
. Ki(X=%) ~v X =0 (14)

st
X~ X~ e and (2) X, 1|‘SSX—+_| (15)

&(3)

@ & ©
Gers) £ = =Ko (Tps+)X  where 7;:% ¢'r¥=1;(51i§) (16)

The continuum analog to Eqn 4-a is (l+’r’e'5)F = M(T’P‘S ¥ l)c (17)
Analytical solution using such a compliance analog would be considerably

more difficult than with the Voigt model unless the equivalent form

P M(BEH)C

could be approximated with an iteratively refined continuum analog of the

Voigt model. The form of this analog is

P’C-z(“‘SS)f, (19)

where; is related, but not equal, to the parameter r.

This procedure could also be used in finite element analyses in which

the global matrix equation is solved iteratively.
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SUBAPPENDIX B.E

CHARACTERISTIC EQUATIONS OF VISCOELASTIC (DAMPED) ROD

Consideration of the uncoupled viscoelastic rod will introduce the
development of coupled, complex characteristic equations and complex eigen-
values for a simpler configuration than the RO. (his will help make the
features of coupling and damping more distinguishable in the RO. The only
difference in the configuration and governing equa-ions, from those of the
uncoupled organpipe, is the addition of a damping term to the state (or
stiffness) equation similar to that for the discrete model. Analysis of

the damped viscoelastic rod shown in Figure B.E-1 is as follows:

L g
8 -"/ ;/ e
Lz[ﬁ’} /l

Figure B.E-1. Damped Rod Schematic

"T

@ L® (e) d) (@ ®
Continuity et = =~ enu.x i (L € S0 gf' Uy 3 1\5(»5*"{ ) rt:-ﬂsb) (1)

Dynsmic State F(;)(‘_l("fsct (Qz= ?_PEP) (2)

Moment umn e “"t = “'F (3)
] X
pefinition L =w ~1C (4)
: -5t
Periodic Expon. Decay All acoustic variable #/ @ (5)

(5) at'—‘-iQu, (6)
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(1)8(2) Pt =~ (Pux +5 Uy ) i

ey () k)
(6)&(7) = 'e(c ~|S.§2)‘Lx {/\lh‘()f’: -ro(cz—igﬂ)gx (8)
i (a) ! (b) o
(3)(&(8) (c*-i§) Wyy = Uy ~{ Also (c”*—iSQ)Z“(':)Equ{x) i (9)
(3)x8(8), (C_L‘I' S'-Q) Pxx ~ Pe (10)
3 Pee = \‘QIP . (11)
7
L Pl
y b
Definitions k@ Q/C ; ’T’Q S/Cv. (13)
(12)&(13) hl = (14)

@ b () .
Defin, (4)&(13) k= k <)—£9—“£‘:M'—- w—/O( € ( KR+I kI where
(%D - { T ik
(C) E: (.Jr‘ (_") L. (15)
[rig.lden. ¢ I(,-(x'r} P \/'r{ = ((l-v(rr)-l +((D’r‘)1}4
) il
(15-c,d, e&f) KRQ c':l'— (- C.os—-i-a( smé) # Krm (w 5”’i . C°Sé>
@)
B.C's. a() = o w(l)= o (16)
: -1kx
Bidir.Wave, (14)&(15) P: (RQ‘KX+ F..C'k ) {17)
i ~ KX
€3), (5Y58(17) % = €£§i: (F% elkx; . e.l ) (18)
@ ; iR ikx_ —ikx
(16-a) P:P(Q'KX.}Q : ) W@ﬁ(e, e ) (19)
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(b) . (@
(16-b), (19-b)&(15-d)  sin(KL) @Si"{“(rzﬂ K1 = cosh (KIL)-sin(KRO) + i sinh(KTL) cas(kKRL)=C (20

: (&)
(20-¢) cosh KTV .5.'n<|<z1_)@ o} sinh (KID cos(KBL) =0 (21)
(@ é) , €) d
(21-ad&hb) coSL! (KT L)#O so  Sin (KZL) =0 F" stn (KRL_) # O 5o S/"/) (Kr(-)\-;)o (22}
{ b, e
(21-b&d) KRL\:‘:)n‘n' so Ka'g) "Er and also KI"—ﬁ—) (23)
@) (9 @3 a)
: : g o ] oL .
(15-g) , (24-c&d)&(23-b) 5\'<v5%+"<'5i"% @ Wh« (.9 ni 530
c NE R =
(25-b) wr+e(? L —m’rc‘\ﬂ‘{- =0 (26)
iy TR e 3 9 ?-'t‘“‘% (ﬁ) 2X/w (CE 2K WO S) WT ot
Irig.ldent.,(24-b)&(15-¢) t%({— ,—'f_i:}—% S [+(o(/u))1 = O™ I-XT .
=Q (28)

(27-d) (Wr+23x*)1 ~2« =

Equations (26) and (28) are two coupled characteristic equations

to be solved for the acoustic decay, «, and angular frequency, w.




SUBAPPENDIX B.F

FREQUENCY RESPONSE OF DAMPED ROD (ACOUSTIC NOMENCLATURE)

Testing of material to obtain its viscoelastic characteristics

generally involves determining its frequency response to forced oscilla-

tions. If the driver has a low output impedance the driving condition is

characterized by an interface pressure and the driving point displacement

or velocity response is measured. If the driver output impedance is high

the response of the driving point stress or force is measured.

Both of
these approaches are

depicted in Figure B.F-1 and outlinec as follows:

NN NN

PR
O\ a,s\\\\*— Poor Ll

N

Figure B.F-1. Acoustically Driven Rod Schematic

Continuity €+ r“fo Uy (L)
Dynamic State P= c:e"’ S ﬁ (2)
Momen t um fo ljt = "'Fx (3)

Periodic Driving a ,'[_(hr*/. hi)x- wt]

Steady Amplitude F v f ~ W ve (4)

Response

(1), (1) &(2) Ptg"eo(czu‘)(*'suﬂ't) o

B-53

O




(4)&(5) 'P‘t W - eh (Ci‘ ls m) u~x

(H\o.\n)! (QZ ~ism) Pxx -Ftt
g F Gk =
(4)&(7) Fxx +<EW‘)F =0
/ (o) ©
3 (o) K
Pefinitions X -w /0 3 e S/c’-

() (x)

Def.&Trig. R @ =T QW e_f where o 2 fw\-l(w?’)

(9)&(11) K=% (C‘W%"'i""”%)

BidiriWave, (3)&(4) P @ P4 e”(xq- P e—;kx w (:L) égw_(ﬁeik{_ P.e‘“«)
(10-b) , (13-a&b) P(‘;) 'P(e"kxfe:ikx) 5 u(gé%(eik{‘e—;k‘) f' P~

O—————

Velocity (High Impedance) Driver

~lwt @ KP -
(10-c) & (14-a&b) L{; e 198 = ’é_'(gfé""d‘o ¢ P @z,.‘P. cas(kx)

(15-a&b) P = /.'eo'w * Uo' COS(kK)‘C-;wt/(k 'S;I)(K‘L))

O —m O

Pressure (Low Impedance) Driver

ik @ @ ,;
(10-d) &(l4-asb) F;'e o o 2:Prcos(kL) %. w= 7";

ik Rrsin(k)€'®t/ (6, w0 cos (KoL)

£ sin(kx)

"

(17-a&b) w

pJ K :Vl-iw’l’
: 6. . @ Lot
(9),(8)&B.C"s. P KIF =0 y w#)= o0 - LL(L)"ermt or P(L>=E€

(6)

£7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

CL5)

(16)

@)

(18)




SUBAPPENDIX B.G

FREQUENCY RESPONSE OF DAMPED ROD
(STRUCTURAL DYNAMICS NOMENCLATURE)

Terms and procedures used in material testing are not identical to the
common acoustic terms used in this report. Accurate predictions of structural
damping in combustion instability requires that analyses and testing at least
can be consistent in transfer and use of data. No sufficiently comprehensive
and generally accepted definition of terms and standard procedures were found
for dynamic testing. Therefore, a trial is made here to outline the fre-
quency response analysis of Subappendix B.F with assumed structural dynamics terms.
This is presented to instigate constructive criticism and initiate other

efforts to obtain a comprehensive and compatible procedure for testing and

analysis
% &C,B rEats
Figure B.G-1., Acoustically Driven Rod Schematic
(@) (b) () @
Continuity et = —fo Uy E::Ex ¢ u-zg{. so 6‘t— Uy (1)
2 .
Dynamic State o= €° C (H’ ’ B) e (2)
Momentum (’, ut e O’x (3)
i [k i kf)x —eot ]
Periodic-Steady O @ e g ~ & (4)
(1-d)&(2) o—t :@& (I-Hﬂ) (5)

B=55




Structural-Acoustic

Comparison

( '})\:‘.( »)l

(4)&(7)

Definitions

(8),(9)&(B.C's.)
Def.&Trig.
(9)&(11)

Ridir.Wave-(3)&(4)

(10-b)&(13-a&b)

(10-c)&(14-asb)

(15-a&h)

(10-d)&(l4=-as&b)

(17-a&b)

(@) (b) +
k=1-B=(+p") e ¢

(‘) QT

{ - z ‘ CZB:-“)S:U
comparing Eqns. F-2&C-2 ) €
e Sipp | roiutteditng tron. D D ur
( ¥ 'B> xx = Ceyp
w?—
PR L = O
Txx * c’-(n'.;s)o’
(a) (b) (@) K
2 LT e SO
BB R Y
A (o) (b) (c) it (5“ -jwl
GeutK om0 | wley=e , uf)=lL.e or C(LY=E €

Ap(b) —|

where

K= %'(COS + 0 Sin 2_)

(o) iR ik b -k +ikx LSS

r=ad e ™ , u= galee -oe )
(m) ﬂKX —IKX (b) K& +i KX -1 Kx
é;:( > b, S Cows ( e >

Velocity (High Impedance) Driver

o =TIRE /
Lo —-——«fcm sm(KL} €

= gy Uy cos(kx) et/ [K-sin(kL)]

-l (b)
U, €'t =28 ces(kx)

-]

—————————

Stress (Low Impedance) Driver

-H&t(“)

£, € z& cos(kL) ¢ G -zikg,

o = &

-sin (K X)
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SUBAPPENDIX B.H

EIGENVALUE PROCEDURES FOR THE DAMPED ROD-ORGANPIPE

The concepts and analytical procedures involved in the analysis of
the RO have been outlined from several viewpoints and in several applica-
tions in Subappendices B.A through B.G. Analyses of uncoupled components and of
individual physical characteristics were used to demonstrate the effects of these
features more clearly. In Appendix B.H all of the components and effects are

combined in a single analysis.

The analysis here contains derivations of both the coupled charac~
teristic equations and the procedure used to extract the eigenvalues from
them. The original characteristic equation development was by Prof F.E.C.
Culick of CIT. Several practical improvements were made to this routine
during shakedown, and after some experience, on the computer. The general-
ized Newton's procedure was then applied to obtain the basis for an ITF

computer program. An outline of the analysis is provided in the following

pages. .
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Figure B.H-1. Schematic of Rod-Organpipe
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SUBAPPENDIX B,I

ANALYTICAL PROGRAM LISTING

00010 L1=16.0CG;

n0020 L2=1C.000;

v0030 C1=6000.0;

00040 C2=120C0.0;

CC0S50 RO1=1.6275E-4;

00060 P=1500;

00070 RO2=1.1012E-5*P/1500;

00080 RRO=10;

€009C BET=.5;

00160 A: PUT(' VARQ VARF DVAR F ALP');
00110 GET(VRJ,VRF,DVR,FD,ALD);

00120 IF(VRFCVRO & CVR>0) DVR=-DVR;

0130 PUT(' ');

00140 ND=12;

00150 DO VAR=VRJ T0O VRF BY DVR;

0016C¢ RCL=VAR;

00162 RCL=C2*L1/(C1l%*L2);

G0166 VRP=VAR;

30168 RRC=RRO*C1/C2;

¢0170 \/!=6.28318*FD;

06180 ALP=ALD;

00196 N=ND;

00202 C: 1=0;

00216 Dw=1;

20220 DAL=1;

60230 Q: I=1+1;

00240 TST=0;

00250 R: TAU==-BET/W;

JU2€0 FI1=ATAN(BET/(1-ALP*TAU));

00270 F12=0.0000;

00280 SR1=SORT(SQRT{((1.N00-ALP*TAU)**2+BET**2));
0029C SR2=1.000;

0300 X1=L1#(Y*SIN(FI1/2.000)=-ALP*COS(F11/2.0CT))/(C1*SP1);
00310 Y1=L1*(W+*COS(F11/2.590)+ALP*SIN(FI11/2.000))/(C1*SR1);
00320 X2=L2*(W*SIN(F12/2.000)=-A P*CNS(F12/2.00C))/(C2%SR2);
00330 Y2=L2*(W*COS(F12/2.000)+ALP*SIN(F12/2.00C))/(C2*SR2);
00340 X11=COSH(2.00*X1)+CNS(2.CC*Y1);

00350 TH1=SIMH(2.00*X1)/XI1;

00360 X11=SIN(2,00*Y1)/XI11;

NC370 X12=COSH(2.00%X2)+CNS(2.CC*Y2);

00380 TH2=SINH(2.00%X2)/X12;

00390 X12=SIN(2,00*Y2)/X12;

J04C0 F22=(FI12-F11)/2.000;

00410 C22=COS(F22);

J0L20 522=SIN(F22);

00430 RZ=RRC*SR1/SR2;

JOLYLYO El=+THI1+RZ*(TH2+#C22+X12%S22);

COLSD E2=<=X|1+RZ*(TH2#S522=-X12%C22);

0046C IF TST>.5 GO TO S;

00470 E10=E1;

o0L80C E20=E2;

20490 WOo=W;

0C500 ALO=ALP;
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L0510 i=W+DW;

J052C TST=1;

60530 GO TO R;

00540 S: IF TST>1.5 GO TO T;

00550 E1W=(E1-E10)/DW;

00560 E2W=(E2-E20)/DW;

90570 W=We;

0580 ALP=ALP+DAL;

6059C TST=2;

2060C GO TO R;

10610 Ts [E TST>205 GO TS

00620 E1A=(E1-E10)/DAL;

0063C E2A=(E2-E2C)/DAL;

00FL0 DET=(E1A*E2W-E1W*E2A);

70640 IF(DET=0) DET=2E-5;

00650 DAL=(E1W*E20-E10%E2W)/DET;

00660 DW=(E10*E2A-E1A*E20)/DET;

00E70 ALP=ALC+DAL;

00680 W=W0+DW;

00690 ERS=.0002;

(0F95 RAL=ALP*RRC*100/(C2/L2);

J0760 1F(ABS(DW/W)+ABS(DAL/ALP))<ERS GO TN U;
06710 IF I1<N-.5 GO TO Q;

00726 DF=DW/6.28318;

00730 F=W/6.28318;

00740 PUT EDIT(F,ALP,V?P,RCL,RAL,RZ, 1)
90750 50 TO B;

007606 U: F=W/6.28318;

00770 RDF=(F-C2/(2%L2))*RRC*L2*1EL/C2;
00786 PUT EDIT(F,ALP,VRP,RCL,RAL,RDF,X1,Y1)
206796 B: FD=F;

20795 ALD=ALP;

J038C0 END;

2C81C GO TO A;
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